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We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elas-
tically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory]
of activated dynamics in bulk spherical particle liquids to address the influence of random particle
pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres
where there is no change of the equilibrium pair structure upon particle pinning. As the pinned frac-
tion grows, cage scale dynamical constraints are intensified in a manner that increases with density.
This results in the mobile particles becoming more transiently localized, with increases of the jump
distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear
modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation
behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly
supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility.
However, the increase of the alpha time with pinning predicted by the local NLE theory is too small
and severely so at very high volume fractions. The strong deviations are argued to be due to the longer
range collective elasticity aspect of the problem which is expected to be modified by random pinning
in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that
quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are
then presented based on the simplest effective-medium-like treatment for how random pinning mod-
ifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent
simulations. Key open problems are discussed with regard to both theory and simulation. Published
by AIP Publishing. https://doi.org/10.1063/1.5011247

I. INTRODUCTION

Understanding the physical mechanisms underlying the
glass transition remains a grand challenge.1–3 When liq-
uids are cooled, their structural relaxation time dramatically
increases by 14 or more decades before the system falls
out of equilibrium heralding kinetic vitrification. Simulations
typically probe 4-6 decades of the initial slowing down—
the so-called dynamical precursor regime. Many theories
have been advanced based on qualitatively distinct hypothe-
ses.1–19 These include approaches that relate glassy dynamics
to equilibrium thermodynamics such as the entropy crisis
Adams-Gibbs model3,4 and Random First Order Transition
(RFOT) theory,13,14 and explicitly dynamical approaches such
as mode coupling theory,18 dynamic facilitation,15,16 corre-
lated strings,19 and local cage scale hopping9,10 coupled with
longer range collective elasticity.7,8,11

In an effort to critically test theoretical ideas, a recent
theme has been to employ simulation to probe the sensitiv-
ity of glassy dynamics to boundary conditions.3,20 A bulk
realization of this idea introduces internal constraints, the so-
called random pinning protocol.21 Here, a subset of particles

a)Author to whom correspondence should be addressed: kschweiz@
illinois.edu

are randomly fixed in space in a manner that does not change
the structural pair correlations, the so-called neutral confine-
ment.21–28 Such random pinning leads to slower relaxation
in a manner that depends strongly on the pinning fraction
and system temperature or density. Although many interest-
ing simulation results for different idealized spherical particle
models have been obtained,22–28 it seems fair to say that this
body of work has not provided a definitive test of competing
theories for at least two reasons. (i) Simulations only probe
the dynamical precursor regime where there are non-universal
crossover effects that often are not well understood. (ii) Most
theories do not make testable quantitative predictions for how
random pinning changes activated dynamics, a limitation that
must be addressed to make definitive progress.25 Beyond the
basic physics motivation, randomly pinned systems are toy
models of real quenched porous media, including colloidal
suspensions with particles pinned using optical tweezers.29

The present work is motivated by both basic physics and
porous media considerations. We aim to construct a theory for
the effect of random pinning by extending the elastically col-
lective nonlinear Langevin equation (ECNLE) approach7,8,30

of activated dynamics in 1-component liquids. ECNLE theory
is formulated at the level particles and forces, and it relates
structure and thermodynamics to relaxation. It has successfully
predicted, often with no adjustable parameters, relaxation in
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colloidal,8,30 molecular,7,8 and polymeric31,32 systems. Gen-
eral and material-specific aspects of relaxation over 14-16
decades in time have been analyzed.

Figure 1 sketches the physical ideas of ECNLE theory.
Building on naı̈ve version of ideal mode coupling theory
(NMCT13,33), a stochastic trajectory level approach for cage
scale single particle barrier hopping was constructed, NLE
theory.10,33 Though successful for the initial few decades of
slow dynamics in the precursor regime,20,24 NLE theory breaks
down at lower temperatures and higher densities where it
underpredicts (eventually severely) the relaxation time.7,8 The
physical reason has been argued to be associated with the need
to create a small amount of local free volume via cage dila-
tion to allow large amplitude hopping events to occur.7,11,30

This cage dilation can be realized via a spontaneous collec-
tive elastic fluctuation of particles outside the cage which is
quantified via a radially symmetric displacement field with
a characteristic amplitude and spatial form. The alpha relax-
ation event then becomes of mixed local-nonlocal character
whereby the longer range elastic fluctuation contributes to the
activation barrier and serves as a facilitating process to allow
irreversible local re-arrangement. Above (below) a charac-
teristic liquid packing fraction (temperature), the collective
elastic component dominates the growth of the relaxation
time.7,8 This crossover is predicted to occur close to the empir-
ically deduced (via extrapolation) “mode coupling transition”
(MCT) volume fraction (∼0.58) or temperature (∼1.1-1.3Tg,
where Tg is the experimental vitrification temperature) where
activated dynamics is already important and not contained in
ideal MCT. We emphasize that this empirical MCT crossover
is not the ab initio computed ideal MCT transition which
occurs at a significantly higher (lower) temperature (pack-
ing fraction) and is more properly thought of as an “onset”
condition.3,7

The present article presents our initial attempt to general-
ize ECNLE theory to pinned-mobile systems. We consider
a fluid of identical hard spheres with a fraction randomly
pinned. Pinning intensifies confining forces on the cage scale
as described via the “dynamic free energy” of NLE theory

FIG. 1. Schematic illustration of the ideas of NLE and ECNLE theories for
the pinned-mobile particle system. Violet and orange spheres correspond to
pinned and mobile particles, respectively.

and also introduces changes of the emergent shear rigid-
ity and nature of the facilitating displacement field fluctua-
tions required to allow a large amplitude hopping event to
be realized. Physically, we expect that pinning has strong
consequences on all mobile particle dynamical properties as
encoded in the dynamic free energy. How it modifies the col-
lective elastic effects are analyzed in an effective medium
framework.

Section II briefly reviews NLE and ECNLE theories for
bulk homogeneous 1-component and binary mixture sphere
fluids. The NLE approach is extended to treat the effect of pin-
ning in Sec. III. Numerical calculations of the dynamic local-
ization length, jump distance, shear modulus, entropic barrier,
and mean alpha relaxation time are presented. The results are
compared to recent simulation studies, and agreements and dis-
agreements are identified. An approximate analytic analysis is
performed and the derived results provide physical insight to
the numerical results. Predictions for the alpha relaxation time
of an effective medium extension of ECNLE theory are pre-
sented in Sec. IV. The paper concludes in Sec. V with a brief
summary and discussion. Appendixes A–C provide technical
details of the theoretical development, implementation, and
analytic analysis.

II. DYNAMICAL THEORIES OF BULK LIQUIDS

As relevant background, we recall NLE and ECNLE theo-
ries of 1- and 2-component fluids in the absence of pinning.7,34

All applications below are for hard spheres, and the required
structural correlations are computed with the Percus-Yevick
(PY) integral equation theory.35

A. Single-component fluid: NLE theory

We consider a hard sphere (diameter d) fluid of vol-
ume fraction Φ = πρd3/6. Adopting a naı̈ve mode coupling
approach based on density fluctuations as the slow variable, the
force-force time correlation function experienced by a tagged
particle in Fourier space is13,33,36,37

〈f(0).f(t)〉 = (kBT )2ρ

∫
dq

(2π)3
|M(q)|2 S(q)Γs(q, t)Γc(q, t),

(1)

where kB is the Boltzmann constant, T is the temperature,
β = 1/(kBT ), S(q) is the collective static structure factor,
q is the wavevector, the effective force is M(q) = qC(q),
C(q) = ρ−1

[
1 − S−1(q)

]
is the direct correlation function,

and Γs(q, t) =
〈
eiq(r(t)−r(0))

〉
and Γc(q, t) = S(q, t)/S(q) are the

normalized (at t = 0) single and collective dynamic propaga-
tors, respectively. The kinetically arrested state is treated as an
Einstein glass corresponding to particles isotropically local-
ized on a length scale rL. In the long time limit, the dynamic
propagators become Debye-Waller factors10,33

Γs(q, t → ∞) = e−q2r2
L/6,

Γc(q, t → ∞) = e−q2r2
L/6S(q).

(2)

The collective contribution includes the De Gennes narrowing
effect. Its form is motivated by from the short time collective
density fluctuation propagator, Γc(q, t) = e−q2Dst/S(q), where
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Ds = kBT /ζ s is the short time self-diffusion constant. Single
particle localization in the long time limit is enforced via the
replacement 6Dst =

〈
(r(t → ∞) − r(0))2

〉
→ r2

L. The self-
consistent expression for rL follows from the “spring constant”
K∞ = β 〈f(0).f(t)〉 which obeys K∞(rL)r2

L = 3kBT , thereby
yielding the NMCT self-consistent localization equation33

1

r2
L

=
ρ

9

∫
dq
|M(q)|2 S(q)

(2π)3
exp *

,
−

q2r2
L

6

[
1 + S−1(q)

]+
-

. (3)

An idealized localized state is predicted at Φc ≈ 0.43.33

NLE theory goes beyond ideal NMCT to predict activated
single particle stochastic trajectories described at the level of
an angularly averaged scalar dynamic displacement, r(t), of
a tagged particle from its initial position. In the overdamped
limit, one has10,33

ζs
dr(t)

dt
−
∂Fdyn(r(t))

∂r(t)
+ ξ(t) = 0, (4)

where ξ(t) is the white noise random force corresponding to the
short time Fickian diffusion process. Fdyn(r) is the “dynamic
free energy,” the gradient of which describes an effective force
on a tagged particle due to the surrounding particles. It is given
by10,33,37

Fdyn(r)

kBT
= −3 ln

r
d
− ρ

∫
dq

(2π)3

|M(q)|2 S(q)

q2 [
1 + S−1(q)

]
× exp

[
−

q2r2

6

(
1 + S−1(q)

)]
≡

Fideal(r)
kBT

+
Fcage(r)

kBT
. (5)

The leading term favors the fluid state, and the second term
corresponds to a trapping potential due to interparticle forces
which favors localization. If the noise term in Eq. (4) is
dropped, the NMCT ideal glass transition is recovered. For
Φ > Φc, Fdyn(r) has a minimum at rL [which obeys Eq. (3)]
and a barrier at displacement of rB of height FB, as sketched
in Fig. 1.

B. Single-component fluid: ECNLE theory

ECNLE theory introduces facilitating longer-range col-
lective elastic fluctuations that are argued to be essential for
allowing cage scale hopping at sufficiently low temperature
or high density.7,11,30 The elastic fluctuation is described by a
displacement field outside the cage radius (defined from the
first minimum of the pair correlation function, g(r)) which is
given by

u(r) = ∆reff

( rcage

r

)2
, r ≥ rcage, (6)

where r is the distance from the cage center, rcage ≈ 1.3 � 1.5d,
and the cage dilation amplitude is of order or smaller than the
transient localization length and is given by7,30

∆reff =
3

r3
cage



r2
cage∆r2

32
−

rcage∆r3

192
+
∆r4

3072



≈
3

32
∆r2

rcage
, (7)

Here, ∆r = rB � rL is the microscopic jump distance (Fig. 1).
The elastic energy cost is then

Fe = 2π
∫ ∞

rcage

drr2ρg(r)K0u2(r)

= 12ΦK0∆r2
eff

( rcage

d

)3
, (8)

where K0 = 3kBT/r2
L is the curvature of Fdyn(r) at r = rL. The

final result of Eq. (8) assumes g(r) = 1 outside the cage, which
is a benign simplification for hard spheres.7

The alpha process is viewed as a mixed local-nonlocal
activated event with a total barrier composed of cage (NLE
theory) and collective elastic contributions, F total = FB + Fe.
For Φ ≤ 0.54, the latter is small or negligible compared to the
local barrier. One measure of a dynamic crossover is when the
rate of increase of the elastic and local barriers with increas-
ing volume fraction (slope) are equal; this criterion yields7 a
crossover at Φx ∼ 0.575. Another measure of crossover, pop-
ular in the analysis of experiments and simulations,3,38,39 is
to empirically fit alpha time data to a mode coupling criti-
cal power law expression. Implementing this procedure for
ECNLE numerical calculations yields7 an “empirical MCT
crossover” at Φc ∼ 0.58–0.59. The latter corresponds to ∼5–6
decades of growth of the alpha time in the dynamic precur-
sor regime, the maximum range typically probed in simula-
tion. The kinetic glass transition, corresponding to an ∼14
decade growth of the alpha time with volume fraction in hard
spheres (or an alpha time of 100 s for thermal liquids), is pre-
dicted8 to occur at Φg ≈ 0.61, where Fe is modestly larger
than FB.

For bulk liquids, one can qualitatively compare trends of
hard sphere systems with those of thermal supercooled liq-
uids of spherical particles by identifying volume fraction with
inverse temperature.40 This connection is also in the spirit of a
quantitative mapping from an effective hard sphere fluid to
a molecular or polymer liquid in the ECNLE framework.8

Whether such a connection for pinned-mobile fluids is reliable
for all aspects of how pinning slows dynamics is not obvious.
We return to this below.

C. Two-component liquids

NMCT and NLE theories for the pinned-mobile particle
system are constructed via taking a special limit of the general
2-component fluid mixture NMCT and NLE theories discussed
previously.34 Key technical details are collected in Appendices
A and B.

Binary mixture NMCT predicts ideal kinetic arrest via
the individual, species-dependent long time mean-square dis-
placements

〈
(ri(t → ∞) − ri(0))2

〉
= r2

L,i, where i denotes the
species i (i = 1, 2). The latter obeys coupled self-consistent
equations,34

3kBT
2
= 〈fi(t → ∞)fi(0)〉

r2
L,i

2
, (9)

where f i(t) is the total effective force acting on the species
i at time t. The required force-force time correlations
are34
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〈fi(t)fi(0)〉 =
k2

BT2

3

∫
dq

(2π)3
q2

2∑
j,k=1

× cij(q)
√
ρj ρkSjk(q, t)cki(q)Γs,i(q, t), (10)

where ρi is the site number density of species i and Sij(q)
and cij(q) are the dimensionless collective structure fac-
tor and direct correlation function between species i and
j, respectively. In long time limit, the Debye-Waller factor

Γs,i(q, t → ∞) = e−q2r2
L,i/6 describes a localized single par-

ticle. Its collective analog is more complicated for a binary
mixture. The derivation is based on a short time analysis of
Sij(q, t) which obeys34,41,42

d
dt

S(q, t) = −q2H(q)S−1(q)S(q, t), (11)

where H ij(q) = (kBT /ζ s ,j)δij, ζ s ,j = kBT /Ds ,j is the short time
friction constant for the component j, Ds ,j is the short time self-
diffusion coefficient, and in matrix form S−1(q) = (I − C∗)−1

with C∗ij = ρicij(q). Equation (11) then becomes

d
dt

S(q, t) = −Ω(q)S(q, t),

Ωij(q) =
kBT
ζs,i

q2
(
δij − ρicij(q)

)
.

(12)

Straightforward calculation (see Ref. 34 and Appendix
A) yields analytic expressions for Sij(q, t). The collective-
Debye-Waller factors then follow via the binary mixture analog
of the 1-component system long time replacement relation,34

6kBTt/ζs,j → r2
L,j and ζs,j/ζs,i = r2

L,i/r
2
L,j, which closes the

theory for rL ,1 and rL ,2. The latter, along with a standard
factorization approximation, yields the dynamic elastic shear
modulus34,41

G =
kBT

60π2

2∑
γ1,γ2=1

2∑
γ3,γ4=1

∫ ∞
0

dqq4 dcγ1γ3 (q)

dq

dcγ2γ4 (q)

dq

× Sγ1γ2 (q, t → ∞)Sγ3γ4 (q, t → ∞). (13)

For a binary liquid, a 2-dimensional dynamic free energy
surface can be constructed.43 However, this is not neces-
sary for the pinned-mobile system since only one species
moves. Thus, as discussed below, one can go directly from
the NMCT level binary mixture description to the analogous
NLE theory in a manner identical to how this is executed for
a 1-component system.10,33 Having done that, the extension
of ECNLE theory to the pinned-mobile system can be per-
formed within the well-established 1-component dynamical
framework.7

III. NMCT AND NLE THEORIES
OF THE PINNED-MOBILE SYSTEM
A. Formulation

We consider the same idealized “neutral confinement”
pinned-mobile particle model that has been extensively stud-
ied using simulation.21–29,44 The idea is to start with a one-
component fluid and randomly pin a fraction of particles. In
simulation, the random pinning procedure must be performed
enough times to properly average over the quenched disorder.
This protocol, by construction, does not change the ensemble-
averaged structural pair correlations between species in the

randomly pinned system, which remain identical to those of
the equilibrium one-component fluid. This implies that for a
theory such as ours that is built on relating dynamics to pair
structure, all static pair correlation functions are unchanged
from those of the pure fluid.

The pinned-mobile system under neutral confinement
obeys c11(r) = c12(r) = c22(r) = c(r), where the subscripts
1 and 2 indicate mobile and pinned particles, respectively, and
c(r) is the 1-component hard sphere fluid analog. The den-
sity of mobile and pinned particles is ρ1 = ρ(1 � α) and ρ2

= ρα, respectively. Because pinned particles are immobile,
their localization length is zero. This constraint is imple-
mented in the 2-component mixture NMCT by letting ζ s ,2

→ ∞, which implies Ω22(q) = 0 and Ω21(q) = 0 in Eq. (12)
(see Appendix A). One can then derive (see Appendix B)
a single NMCT localization relation for the mobile species
as

9

r2
L1

=

∫
dq

(2π)3
q2e−q2r2

L1/6
[

c(q)S12

ρ1 (1 − ρ1c(q))

+
ρ1c(q)2

1 − ρ1c(q)
e−q2r2

L1(1−ρ1c(q))/6
]

. (14)

The corresponding NLE description and dynamic free
energy for the mobile species is constructed from Eq. (14)
exactly as done for a 1-component system. The result is

Fdyn(r1) = −3 ln r1/d −

∫
dq

(2π)3



c(q)S12(q)e−q2r2
1/6

ρ(1− α)
[
1− ρ(1− α)c(q)

]
+

ρ(1 − α)c2(q)e−q2r2
1[2−ρ(1−α)c(q)]/6[

1 − ρ(1 − α)c(q)
] [

2 − ρ(1 − α)C(q)
]  . (15)

The first term in the square brackets of Eqs. (14) and
(15) arises from forces between pinned and mobile particles.
There is no Debye-Waller-like factor for the former since
rL2 = 0, and this term vanishes if the pinned particle frac-
tion is zero since S12(q) → 0. The second term arises from
forces between pairs of mobile particles. Setting the deriva-
tive of the dynamic free energy to zero yields Eq. (14), by
construction.34

Before proceeding, we make a few comments on lim-
itations of our approximate theory. First, the naı̈ve MCT,
dynamic free energy concept, and NLE theory all capture
only the local caging dynamical effects in an average man-
ner. This implies that longer-range considerations such as
the connectivity or percolation of open space in the pinned-
mobile system are not explicitly included. Second, the so-
called “obstruction effects” associated with the exact enforce-
ment of the excluded volume constraint that pinned parti-
cles block mobile particles are not rigorously captured. Per
all effective force treatments, this obstruction effect enters
in an average manner, here in Eqs. (14) and (15) via the
pinned-mobile effective repulsive force (the direct correla-
tion function) and the arrested Debye-Waller factors of pinned
particles. The consequences of such simplifications cannot be
a priori evaluated, but rather one must infer their usefulness by
confronting the theoretical predictions with simulation and/or
experiment.
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B. Numerical results: Length scales, barrier,
and shear modulus

Before implementing the theory, we note (per the dis-
cussion above) that beyond a critical pinning fraction, one
expects that the “accessible free volume” for the mobile par-
ticle motion becomes “de-percolated.” Since NLE theory is
local and barriers are finite below random close packing, it
does not capture this larger length scale effect. Thus, how high
in αNLE theory is reliable is unknown. Simulations of various
sphere models23–28 typically explore pinning fractions up to α
∼ 0.1–0.2 although simulations of pinned-mobile water mod-
els22 extend to α ∼ 0.5 and still find relaxation and diffusion.
We perform NLE theory calculations that fall in between these
limits.

Figure 2 shows NMCT calculations of how the ideal glass
transition, which is the initial dynamic crossover to the emer-
gence of a barrier in NLE theory, changes with pinning frac-
tion. The onset volume fraction decreases, roughly linearly,
by ∼10% as α grows to 20%. As discussed in more detail in
Sec. III D, Fig. 2 also shows a kinetic arrest volume fraction
relevant to real hard sphere colloid suspensions, Φg, defined
as when the mean barrier hopping time in the pinned-mobile
system reaches the mean hopping time in the pure fluid at
Φ = 0.58.

Figures 3(a) and 3(b) show the results for the transient
localization length and barrier location, respectively, as a func-
tion of pinning fraction at high packing fractions. For unpinned
systems (α = 0), the localization length (barrier position)
decreases (increases) with volume fraction, and these trends
persist at nonzero degrees of pinning. At a fixed volume frac-
tion, pinning reduces the localization length in a roughly linear
manner. On the other hand, the barrier location, rB, increases
with pinning fraction. We physically interpret this trend in
the context of 1-component NLE theory which predicts that
rB increases with density.10,33 The increase here with pinning
fraction is suggested to be a consequence of a reduced number
of pathways for a mobile particle to hop as the cage becomes
more rigid and confining.

Figure 4 shows the variation of the local barrier height with
pinning fraction at a fixed volume fraction and as a function
of volume fraction at fixed degree of pinning. As expected,

FIG. 2. The ideal NMCT (Φc) and dynamical arrest (Φg) volume fractions
versus pinning fraction. The latter volume fraction is defined as when the mean
alpha time of the pinned-mobile system equals its pure bulk counterpart at Φ
= 0.58.

FIG. 3. (a) The localization length (units of particle diameter) as a function
of pinning fraction at the indicated different volume fractions, Φ. The solid
and dashed-dotted curves correspond to the full numerical calculations and
the ultra-local analytic expression discussed in the text, respectively. (b) The
corresponding barrier position as a function of pinning fraction at various
volume fractions.

pinning always increases the barrier for local hopping.
Figure 4(a) shows that the α-dependence of the barrier is
weakly supra-linear. Qualitatively, the hopping time is pro-
portional to eβFB , and thus one expects that the relaxation time
will grow roughly exponentially with pinning fraction. Fig-
ure 4(b) shows that the volume fraction dependence of the
barrier is relatively modestly enhanced with pinning. In pure
hard sphere fluids, the local NLE barrier grows nearly lin-
early with inverse localization length.7,33,45 Figure 5 shows
that this behavior continues to hold rather well in the presence
of pinning although there are second-order deviations.

Figure 6 uses Eq. (13) plus the localization length results
of Fig. 3 to compute how the dynamic shear modulus of the
ideal arrested mobile sub-system changes with pinning frac-
tion and volume fraction. Recall that there is no change of local
structure, and pinned particles enter the calculation only via
their effect on the mobile subsystem. The latter enters Eq. (13)
via the prefactor (1 � α) which multiplies density and is the
leading cause of G decreasing with pinning fraction as seen in
Fig. 6. If this factor is removed, G grows with pinning fraction
since mobile particles are more localized. In any case, changes
of G with pinning fraction are modest.

C. Analytic analysis

For one-component hard sphere fluids with barriers
beyond a few kBT, much insight has been gained within the
NLE framework based on the approximate “ultra-local” ana-
lytic analysis.45 The latter is enabled by high wavevector
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FIG. 4. The local cage barrier (in thermal energy units) as a function of (a)
pinning fraction at various volume fractions and (b) volume fraction at various
pinning fractions.

dominance in the dynamic force vertex of Eqs. (14) and (15)
and the known analytic form of c(q) in this regime. We do
not repeat published technical details.45 Here we present an
analogous analysis for the pinned-mobile system. There is no
a priori knowledge whether the analytic simplifications will
be accurate for this system.

The critical result of the ultra-local analysis is that for
pure hard sphere fluids a single “coupling constant” controls,
to leading order, all aspects of the dynamic free energy,45

λ = Φg(d)2, (16)

where g(d) is the contact value of the pair correlation function.
The dynamic vertex in NMCT and NLE theories is related to

FIG. 5. The local cage barrier for various volume fractions as a function of
dimensionless inverse localization length, d/rL(α, Φ), for a range of volume
fractions at 4 fixed values of pinning fraction.

FIG. 6. The logarithm of the shear modulus (in units of kBT /d3) as a function
of pinning fraction for various volume fractions. The solid and dashed-dotted
curves correspond to the full numerical results and the analytic ultra-local
analysis expression discussed in the text, respectively.

an effective mean square force experienced by a tagged parti-
cle due to its environment, which is dominated by its caging
neighbors for short range interactions. This leads to an intu-
itive result since the “effective force” for hard spheres is an
impulse that acts only when particles are in contact and hence
∼kBTg(d)/d. The contact value is directly related to the ther-
modynamic dimensionless pressure P (compressibility factor,
Z) via an exact theorem7,35

Φg(d) ∝ Z − 1, Z =
βP
ρ
→ λ ∝

(Z − 1)2

Φ
. (17)

Prior analytic analysis found (d/rL)∝ βFB ∝ λ, relations which
connect short time (localization length) and long time (barrier
hopping) dynamics, a hallmark of NLE theory.45

Ultra-local analytic analysis has been performed for the
pinned-mobile system; Appendix C provides some details. The
localization length and barrier position follow from the self-
consistent equation

√
3π
4

d
rL,B
= Φg2(d)

[
√

2αerfc

(
qcrL,B
√

6

)
+ (1 − α)erfc

(
qcrL,B
√

3

)]
, (18)

where qc = 2π/rcage is the lower wavevector cutoff.45 Since
qcrL(α) � 1, one can safely take qcrL(α) = 0 and obtain for
the localization length

rL(α) ≈

√
3π

4Φg2(d)

[
1 − (
√

2 − 1)α
]

= rL(0)
[
1 − (
√

2 − 1)α
]

. (19)

The predicted linear dependence on the pinning fraction is
shown in Fig. 3(a) and is in excellent accord with the full
numerical calculations. If qcrB is sufficiently large, then
erfc(x) ≈ e−x2

/(x
√
π) in Eq. (18), which allows one to obtain

rB(α) =
1
qc

√√√√
6 ln *.

,

4Φg2(d)qc

πd


α +

√
α2 +

(1 − α)πd

4Φg2(d)qc



+/
-

≈
1
qc

√
6 ln

(
8Φg2(d)qcα

πd

)
, (20)
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where the final expression follows for large enough values of
α. It is well established45 that even for one-component hard
sphere fluids that the analytic approximations are less accurate
for the barrier location since it occurs at a particle displacement
far larger than the localization length. For the barrier location,
we do find that Eq. (20) properly captures its increase (and a

larger jump distance) with pinning fraction as seen in Fig. 3(b).
However, the quantitative accuracy is very poor compared to
the numerical predictions, and hence the corresponding curves
are not shown.

The local barrier height can also be analytically calculated
in the ultra-local limit as

FB

kBT
= −3 ln

rB

rL
− 4d2ρg2(d)

∫ ∞
qc

dq

2q2

[
2α

(
e−q2r2

B/6 − e−q2r2
L/6

)
+ (1 − α)

(
e−q2r2

B/3 − e−q2r2
L/3

)]
= −3 ln

rB

rL
+

12Φg2(d)
√
πqcd


(1 − α) *.

,

qcrB
√

3
erfc

(
qcrB
√

3

)
+

(
e−q2

c r2
L/3 − e−q2

c r2
B/3

)
√
π

+/
-

+ 2α *.
,

qcrB
√

6
erfc

(
qcrB
√

6

)
+

(
e−q2

c r2
L/6 − e−q2

c r2
B/6

)
√
π

+/
-


. (21)

The barrier height depends on rL, rB, Φ, g(d), and α. Further
simplification follows by adopting the inequalities qcrL �

√
6

and qcrB >
√

6 (reasonable in the high barrier regime), yielding

FB

kBT
= −3 ln

rB

rL
+

12Φg2(d)
πqcd

(1 + α) + 3. (22)

In practice, the second term is more dominant. Equation (22)
is consistent with the trends in Fig. 4(a), including the roughly
linear growth of FB with pinning fraction at fixed density and
the near linear proportionality between the barrier height and
inverse localization length seen in Fig. 5. However, quanti-
tatively the analytic result is in very poor agreement with our
numerical results and we refrain from plotting the curves. This
poor quantitative performance is not unexpected since the bar-
rier location enters Eq. (22), which (as discussed above) is not
well captured by the analytic approximations.

An analytic analysis of the dynamic shear modulus can be
straightforwardly performed based on Eq. (13). One obtains

G(α) ≈
9ΦkBT (1 − α)

5πdr2
L(α)

≈ G(0)
[
1 −

(
3 − 2

√
2
)
α

−
(
4
√

2 − 5
)
α2 −

(
3 − 2

√
2
)
α3

]
. (23)

It is inversely proportional to the localization length squared,
or equivalently one power of the harmonic spring constant of
the dynamic free energy, K0. Figure 6 shows good agreement
between the analytic and numerical results, which is expected
since the crucial physical quantity that determines the dynamic
shear modulus is the localization length. Equations (22) and
(23) also imply the inter-relations

FB(α) ∝
√

G(α), (24)

FB(α)rL(α) ∝ (1 + α)/(1 + (
√

2 − 1)α). (25)

Equation (25) explains the secondary trend in Fig. 5 that
increasing α increases the barrier at fixed 1/rL.

D. Mean hopping time results

We now consider the mean barrier hopping time, taken
as a surrogate for average alpha relaxation time τα. It follows

from the Kramers mean first passage time as7,46

τα ≈ τs
2π
√

K0KB
eβFB . (26)

Equation (26) applies when the barrier is beyond several
thermal energy units, and here τs is the short length/time
scale dynamical process associated with cage-corrected binary
(Enskog) collisions.7,33 We assume that the latter is unaffected
by pinning. Any modification of τs by pinning is a small effect
given it enters Eq. (26) as a prefactor. Thus, τs is given by the
prior employed hard sphere fluid expression (for Newtonian
dynamics)7

τs = τ0


1 +

1
36πΦ

∫ ∞
0

dq
q2 [

S(q) − 1
]2

S(q) + b(q)


,

τ0 =
g(d)

24ρd2

√
M

πkBT
,

(27)

where b�1(q) = 1 � j0(q) + 2j2(q), jn(x) is the spherical Bessel
function of order n, M is the particle mass, and τ0 is a “bare”
Boltzmann-like time scale relevant to the low density limit.

Figure 7 presents NLE theory calculations of the alpha
time. The main frame shows its volume fraction dependence
becomes stronger as the pinning fraction increases. This is
largely due to the higher barrier per Fig. 4. The inset of Fig. 7
shows the alpha time at a fixed volume fraction grows in a
weakly supra-exponential manner with pinning fraction, as
expected based on Fig. 4. Over the range of pinning fractions
probed in simulations (up to α ∼ 0.15), the nearly expo-
nential growth with α occurs with a slope that grows with
increasing volume fraction. Based on the inverse tempera-
ture volume fraction correspondence,3,40 this trend is con-
sistent with simulations in this regime (up to α ∼ 0.15) at
high and intermediate temperatures above the empirical MCT
value.

Figure 8 presents the relaxation time calculations in two
distinct normalized formats. The inset shows how it grows with
pinning fraction relative to the volume-fraction-dependent
pure fluid analog. An exponential growth law is clearly seen,
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FIG. 7. Log-linear plot of the dimensionless mean barrier hopping time com-
puted using NLE theory versus volume fraction for several pinning fractions
and (inset) versus pinning fraction for several volume fractions.

along with only of order one decade enhancement at a pin-
ning fraction of 15% even at a high volume fraction of ∼0.58
(empirical MCT crossover). The main frame shows the ana-
log of an Angell plot where the volume fraction is scaled
by its value where the alpha time of pinned systems equals
its unpinned fluid analog at Φ = 0.58. This procedure oper-
ationally defines a kinetic vitrification volume fraction, Φg,
which decreases with pinning fraction (see Fig. 2). The theory
predicts that dynamic fragility weakly decreases with pin-
ning, as evidenced by the weaker density variation in Fig. 8, a
trend in qualitative accord with simulations of thermal liquid
models.25,28

E. NLE theory versus simulation

We recall that bulk (no pinning) colloid experiments and
hard sphere fluid simulations typically probe only roughly 3
decades in relaxation time in the “glassy precursor regime”
spanning the range of Φ ∼ 0.5–0.58.1,3 For this initial slowing
down regime, NLE predicts that the alpha time grows by a
smaller amount of order 1.5 decades. Hence, collective elas-
tic effects seem already important. At the even higher volume
fractions probed in more recent simulation and experimen-
tal work,47 NLE theory was found to strongly under predict
the alpha time.7,8,30,48 Hence, one might anticipate that NLE

FIG. 8. Normalized Angell-like plot of the dimensionless NLE theory alpha
relaxation time versus scaled volume fraction, Φ/Φg, for various random pin-
ning fractions. (Inset) Log-linear plot of the alpha time normalized by its pure
fluid analog as a function of pinning fraction at several volume fractions.

theory (strongly) underpredicts the effect of pinning on relax-
ation. As discussed below, this is what we find. The one caveat,
which we believe is a major one, is whether quantitative or
subtle trends deduced based on isochoric simulations that
lower temperature can be expected to present in our isothermal
results for the effect of pinning as a function of density. We
are unaware of simulations that have definitively addressed
this question. Our intuition is that there could be major
differences.

Near the empirical MCT crossover of bulk ECNLE theory
(Φ ∼ 0.58–0.59), NLE theory predicts only roughly 1 decade
of slowing down at α ∼ 0.15 compared to the alpha time of the
pure system. By contrast, simulations of a binary mixture of
soft repulsive harmonic spheres23,25 over a temperature range
where the bulk alpha time grows by 5-6 decades find expo-
nential enhancements of the alpha time with pinning fraction
which reach a factor of ∼10 000 at α ∼ 0.15 near the empir-
ical MCT temperature. Simulations of binary Lennard-Jones
(LJ) mixtures26 find a weakly supra-exponential growth of the
alpha time with pinning fraction which is enhanced with cool-
ing, reaching a factor of∼1000 at α ∼ 0.15 for T /TMCT ,empirical

≈ 1.3. Studies of other binary soft sphere mixtures27 up to α
∼ 0.1 over a modest range of temperature (bulk alpha time
grows by 2 decades) find an exponential growth of the relax-
ation time with α by a factor of ∼1000 at the lowest T studied.
Simulations of yet other 2d and 3d model mixtures28 find sim-
ilar trends up to α ∼ 0.1, but the alpha time grows significantly
more strongly than exponential with pinning fraction. Thus,
in the glassy precursor regime probed in diverse simulations,
although there are quantitative variations, the qualitative trends
are broadly similar including a roughly exponential growth
of time scale with pinning fraction. This trend is captured by
NLE theory but with a magnitude strongly underpredicted. Our
hypothesis is that collective elastic effects are important even
in the dynamic precursor regime, a natural deduction given the
known situation for bulk fluids.7,8

We note one qualitative deviation between the NLE theory
and repulsive harmonic sphere simulations25 which appears
to have probed the lowest temperatures to date. They found
the relative increase of the relaxation time with pinning frac-
tion, which grows with cooling at relatively high and inter-
mediate temperatures, slows down, and appears to saturate
near the empirical MCT temperature. This trend is seem-
ingly in contrast to the NLE theory result that the relative
growth monotonically increases with density. We do believe
that the latter trend is correct for the purely local physics that
NLE theory addresses. Curiously, other simulations23,26–28

do not report the aforementioned behavior and whether the
reason is they use different interparticle potentials and/or
do not probe to as effectively low temperature is unclear
to us.

IV. COLLECTIVE ELASTIC EFFECTS
IN PINNED-MOBILE SYSTEMS
A. Qualitative considerations

The discussion in Sec. III E raises two fundamental the-
oretical questions. For hard spheres, will the proper gener-
alization of ECNLE theory that includes collective elastic
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effects in the pinned-mobile hard sphere system predict a non-
monotonic variation or saturation-like behavior of the alpha
time at relatively high volume fractions? Should such a fea-
ture even be present if density is the control variable versus
temperature under constant volume conditions? We have no
answer to the second question and suggest that new sim-
ulation studies are necessary. For the former question, we
first offer a qualitative discussion of how random pinning
might change the collective elastic barrier which involves
multiple distinct physical effects that may be affected dif-
ferently by pinning. The full problem, including possible
pinning-induced strain field localization, is presently under
study. Section IV B presents our initial effective medium
analysis.

The collective elastic barrier involves three key contri-
butions in Eq. (8) (see Fig. 1 for a schematic).7 (1) The
microscopic particle jump distance which sets the amplitude
of cage dilation and hence the required elastic displacement
field fluctuation. (2) The degree of transient particle localiza-
tion (rL) or harmonic spring constant (K0), which sets the
energy scale for elasticity and the collective elastic barrier.
(3) The spatial form of the strain or displacement field as a
function of distance from the cage center. Contributions (1)
and (2) are local properties determined by NLE theory, and
they both change in the direction of a larger elastic barrier for
all volume fractions as the pinning fraction increases. Issue
(3) is complex since it requires knowing how the excluded
volume associated with quenched disorder (immobile parti-
cles) modifies the facilitating elastic strain field. Physically
we expect that the latter may become spatially localized since
the randomly pinned particles cannot move and rigorously
expel it. If true, such displacement field localization presum-
ably reduces the elastic barrier and increasingly so as more
particles are pinned. Hence, whether more pinning increases
or decreases the collective elastic barrier would seem to be
a subtle problem that depends on three competing factors. A
possible scenario for the pinning enhancement of the relax-
ation time to stop growing at high enough density (or low
enough temperature) is that point (3) becomes dominant, a
perhaps plausible speculation if the strain field becomes expo-
nentially localized in space. However, the problem seems even
more subtle since, as argued in the literature,25 under suffi-
ciently deep supercooling conditions that can be probed in
the laboratory, pinning enhancement of the relaxation time is
expected to again become stronger with cooling or densifica-
tion; this regime is presently beyond the capability of computer
simulation.

B. Naı̈ve effective medium approximation

In bulk globally homogeneous fluids, ECNLE theory
adopts an elastic continuum model as the technical tool to
determine the spatial form of radially symmetric displacement
field outside the cage based on solving11(

KB +
G
3

)
∇(∇.u) + G∇2u = 0, (28)

where KB and G are the bulk and dynamic shear modulus,
respectively, and u is the vector of the displacement field.

Randomly pinning particles introduce quenched spatial dis-
order, fluctuations in local mechanical stiffness, and the hard
constraint that the mobile particle facilitating displacement
field cannot penetrate the finite excluded volume presented
by the pinned particles. How to determine the modified dis-
placement field is an open problem. Here, we analyze only the
simplest approximation.

Recall our simple treatment of the local cage scale (NLE
theory) aspect whence particle pinning only enters via setting
their Debye-Waller factors to unity, from which we compute
their effect on all key properties of the dynamic free energy.
This analysis seems akin to the simplest effective medium
approach, and we adopt a similar perspective for the elas-
tic barrier. The dynamic free energy predicts the required
changes with pinning of the localization well curvature and
jump distance in Eq. (8), and we make the strong assumption
of effective spatial homogeneity and use the unpinned form
of the displacement field spatial dependence in Eq. (6). This
may overpredict the spatial range of the displacement field
and the effect of pinning on the elastic barrier as discussed in
Sec. III E.

C. Numerical results

Figure 9 shows ECNLE theory calculations of the total
barrier. Remarkably, the nearly linear growth with pinning
fraction is again found. This implies that, qualitatively, the
alpha relaxation time grows exponentially (or weakly supra-
exponentially) with pinning fraction and with a slope that
grows monotonically with volume fraction.

The corresponding hopping times are shown in Fig. 10
based on the previously developed expression for the alpha
relaxation time,7,8

τα ≈ τs

[
1 +

2π
√

K0KB
eβ(FB+Fe)

]
. (29)

The theory predicts the alpha time near the empirical MCT
crossover volume fraction of ∼0.58–0.59 is ∼3 decades larger
at a pinning fraction of 15%. As discussed in Sec. III E, this
is a reasonable value compared to various simulation studies.
The magnitude of the alpha time increase with pinning fraction
monotonically grows with volume fraction. This seems intu-
itive to us, but conflicts with one simulation25 which found
that this dependence saturates at low enough temperatures

FIG. 9. The total (local cage plus collective elastic) barrier as a function of
pinning fraction at several volume fractions.
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FIG. 10. Log-linear plot of the dimensionless mean alpha relaxation time
calculated using ECNLE theory versus the fraction of pinned particles for
several volume fractions. (Inset) Analogous results plotted versus volume
fraction at several pinning fractions.

approaching the empirical MCT value. We recall the subtle
issue that simulations which vary temperature at a fixed den-
sity may be quite different for some of the pinning physics
than for hard spheres where slower relaxation and barriers are
induced by increasing density.

Following the same analysis done in the main frame of
Fig. 8 based on a pinning-fraction-dependent kinetic glass tran-
sition volume fraction (per Fig. 2), we use the ECNLE theory
results in Fig. 10 to construct an Angell-like plot in Fig. 11.
Qualitatively, one sees that the dynamic fragility again weakly
decreases with pinning fraction. Quantitatively, we compute a
dynamic fragility as

m =
d

d(Φ/Φg)
log(τα(Φ, α))|Φ=Φg . (30)

The results are shown in the inset of Fig. 11. One sees
that the dynamic fragility decreases by ∼15% as the frac-
tion of pinned particles grows from zero to 20%. This pre-
diction is in qualitative accord with the simulation study of
Ref. 28.

Finally, one can ask whether a master curve that collapses
all the pinning fraction and volume fraction dependences of
the ECNLE theory relaxation time data in Fig. 10 can be

FIG. 11. Normalized Angell-like plot of the dimensionless alpha relaxation
time versus scaled volume fraction, Φ/Φg, for various random pinning frac-
tions using ECNLE theory and the α-dependent value ofΦg per Fig. 2. (Inset)
Dynamic fragility as a function of pinning fraction.

FIG. 12. Replot of the data of Fig. 10 per Eq. (31) with λ = 1.1. The
dashed-dotted curve corresponds to the parabolic fit function f (x) = 1453.75
� 5645.914x + 5490.94x2. Deviations become large only at low volume
fractions.

constructed. We have explored this possibility within a frame-
work where the pinning fraction and volume fraction depen-
dences factor in a multiplicative manner,

log

(
τα(Φ, α)
τα,bulk(Φ)

)
∝ αλf (Φ), (31)

where λ is an adjustable exponent and f (x) is an unknown
function. Given the near linearity of our results in the main
frame of Fig. 10, one might expect λ is close to unity. As
shown in Fig. 12, we indeed find that Eq. (31) is quite accurate
based on λ = 1.1. From the inset of Fig. 10, we conclude that
the good collapse in Fig. 12 in the high volume fraction regime
corresponds to a variation of the alpha relaxation time over at
least 12 decades. This rather remarkable result would seem
to be a distinctive consequence of the present ECNLE theory
ideas for the pinned-mobile system. The data in Fig. 12 can
be fit to various functional forms to extract f (x). We find that
a simple parabolic function works quite well, as shown by the
dashed-dotted curve in Fig. 12.

V. CONCLUSIONS

We have extended the microscopic NLE theory for the
local cage scale single particle activated dynamics in bulk liq-
uids to treat the effect of random pinning under the neutral
confinement condition. The theory was analyzed and imple-
mented for hard spheres. As the pinned fraction grows, all
aspects of local cage confinement as quantified by the dynamic
free energy are enhanced: the localization length of mobile
particles decreases modestly, while the barrier location and
hence the jump distance grow substantially. The local bar-
rier increases in a weakly supra-linear manner, resulting in
a weakly supra-exponential growth of the mean alpha time
with pinning fraction. The effect of pinning on the barrier and
relaxation time grows with volume fraction. Analytic analy-
sis in the so-called “ultra-local limit” was performed for the
pinned-mobile system. The derived results agree well with our
numerical results for the localization length and dynamic shear
modulus but are quantitatively very inaccurate for the barrier
location and height.

Collective elastic fluctuations are of critical importance
when barriers become substantial. They were analyzed by
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extending the homogeneous fluid ECNLE theory to the
pinned-mobile system based on the simplest effective medium
approximation. Pinning is then predicted to monotonically
enhance the elastic barrier and more so at higher volume frac-
tion. Changes of the relaxation time due to pinning become
order(s) of magnitude larger than predicted by the local NLE
approach.

The present theory is easily extended to treat any spher-
ical particle model such as soft repulsive spheres or Weeks-
Chandler-Andersen (WCA) fluids. Additional complications
such as vibrating pinned particles or attractive interactions
between the pinned and mobile particles can be straightfor-
wardly treated. The former reduces the effect of random pin-
ning on dynamical slowing down, while the latter is expected
to enhance it and is especially relevant for using the random
pinning model as a crude mimic of real porous materials.

The theoretical results for hard spheres were qualitatively
and semi-quantitatively contrasted with simulations of spher-
ical particle thermal liquids. Similarities were identified in
the dynamic precursor regime, including a roughly exponen-
tial, or weakly supra-exponential, growth of the alpha time
and reduced fragility with pinning fraction. However, large
quantitative deviations between the NLE theory results and
simulations emerge corresponding to strong underpredictions
of the extent that pinning increases the relaxation time. The
naı̈ve extension of ECNLE theory to the pinned particle sys-
tem appears to correct this aspect, yielding exponential growth
of the alpha time with reasonable magnitudes. This enhance-
ment monotonically grows with volume fraction. Thus, the
tendency of pinning effects on the relaxation time to slow
down or even become invariant to temperature under cold
enough conditions observed in one simulation study25 is not
captured. Whether this is a reflection of missing physics in the
theory, or that how pinning slows motion based on constant
volume cooling is different than increasing density isother-
mally for specific subtle effects, or some other complication, is
unclear.

Future work is aimed at going beyond the naı̈ve effec-
tive medium description of how pinning affects the collec-
tive elastic part of the problem. A key missing feature of
our present work is that at very high volume fraction or
low temperature random pinning of finite excluded volume
obstacles may spatially localize the displacement field in a
manner that depends on volume fraction and pinning frac-
tion. The construction of a theory for this effect is under
development.

ACKNOWLEDGMENTS

This work was performed at the University of Illinois at
Urbana-Champaign and was supported by DOE-BES under
Grant No. DE-FG02-07ER46471 administered through the
Frederick Seitz Materials Research Laboratory.

APPENDIX A: MIXTURE STATIC AND SHORT TIME
DYNAMIC STRUCTURE FACTORS

To implement the NMCT and NLE theories in Eqs. (14)
and (15) requires the spherical particle binary mixture (species

labels 1, 2) direct correlation functions and partial collec-
tive structure factors as determined using the Ornstein-Zernike
(OZ) matrix integral equations. We simply quote the standard
results34 where hij(r) = gij(r) � 1,

Sij(q) = δij +
√
ρi ρjhij(q),

S11(q) =
1 − ρ2c22(q)

[1 − ρ1c11(q)][1 − ρ2c22(q)] − ρ1ρ2c12(q)c21(q)
,

S21(q) =

√
ρ1ρ2c21(q)

[1 − ρ1c11(q)][1 − ρ2c22(q)] − ρ1ρ2c12(q)c21(q)
,

S12(q) =

√
ρ1ρ2c12(q)

[1 − ρ1c11(q)][1 − ρ2c22(q)] − ρ1ρ2c12(q)c21(q)
,

S22(q) =
1 − ρ1c11(q)

[1 − ρ1c11(q)][1 − ρ2c22(q)] − ρ1ρ2c12(q)c21(q)
.

(A1)

For neutral confinement all direct correlation functions are
identical.

Equations (11) and (12) define our model for the short time
collective partial dynamic structure factors. Because species 2
is a pinned, effectively ζ s ,2 → ∞, and hence Ω22(q) = 0 and
Ω21(q) = 0 in Eq. (12). Using this simplification and cij(q)
= c(q) yields

Ω11(q) =
kBT
ζs,1

q2(1 − ρ1C11),

Ω12(q) = −
kBT
ζs,1

q2ρ1C12,

Ωav(q) =
Ω11(q) +Ω22(q)

2
=
Ω11(q)

2
,

∆(q) = Ω11(q)Ω22(q) −Ω12(q)2 = 0.

(A2)

Solving for the partial dynamic structure factors involves two
relaxation modes,34

S11(q, t) = aI e−ΓI t + ace−Γct ,

S21(q, t) = bI e−ΓI t + bce−Γct .
(A3)

Straightforward algebra then yields for the relaxation rates,

ΓI (q) = Ωav(q) −
√
Ωav(q)2 − ∆(q)2 = 0,

Γc(q) = Ωav(q) +
√
Ωav(q)2 − ∆(q)2 = Ω11(q),

(A4)

and amplitudes,

aI (q) =
(ΓI (q) −Ω22(q))S11(q) +Ω12(q)S21(q)

ΓI (q) − Γc(q)

=
ρ1C12S21

1 − ρ1C11
,

bI (q) =
(ΓI (q) −Ω11(q))S21(q) +Ω21(q)S11(q)

ΓI (q) − Γc(q)

=
ρ1C12S21

1 − ρ1C11
= S21(q), (A5)
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ac(q) =
(Γc(q) −Ω22(q))S11(q) +Ω12(q)S21(q)

Γc(q) − ΓI (q)

= S11 −
ρ1C12S21

1 − ρ1C11
,

bc(q) =
(Γc(q) −Ω11(q))S21(q) +Ω21(q)S11(q)

Γc(q) − ΓI (q)

= 0, (A6)

Combining all the above, one obtains

S11(q, t) =
ρ1c(q)S21(q)
1 − ρ1c(q)

+

(
S11(q) −

ρ1c(q)S21(q)
1 − ρ1c(q)

)
e−D1q2(1−ρ1c(q))t ,

S21(q, t) = S21(q). (A7)

S22(q) and S12(q) follow by interchanging the labels 1 and 2
in the above results to obtain

S12(q, t) =
ρ1c(q)S22(q)
1 − ρ1c(q)

+

(
S12(q) −

ρ1c(q)S22(q)
1 − ρ1c(q)

)
e−D1q2(1−ρ1c(q))t ,

S22(q, t) = S22(q). (A8)

APPENDIX B: DERIVATION OF NMCT AND NLE
THEORIES FOR THE PINNED-MOBILE SYSTEM

To construct the self-consistent NMCT equations, one
takes the long time limit of the appropriate generalized
Langevin equations. For the pinned-mobile system, this is
achieved via the same mapping employed for the 1-component
system: 6Ds,1 = 6kBTt/ζs,1 → r2

L. Implementing this and using
the partial collective dynamic structure factor expressions of
Appendix A in Eq. (14) yield

9

r2
L1

=

∫
dq

(2π)3
q2e−q2r2

L1/6
[
c(q)S11(q, t → ∞)c(q) + c(q)S21(q, t → ∞)c(q)

c(q)S22(q, t → ∞)c21(q) + c(q)S12(q, t → ∞)c(q)
]

=

∫
dq

(2π)3
q2e−q2r2

L1/6
[
c(q)2

(
ρ1c(q)S21

1 − ρ1c(q)
+

(
S11 −

ρ1c(q)S21

1 − ρ1c(q)

)
e−q2r2

L1(1−ρ1c(q))/6
)

+ c(q)S22(q)c(q)

c(q)S21(q)c(q) + c(q)c(q)

(
ρ1c(q)S22

1 − ρ1c(q)
+

(
S12 −

ρ1c(q)S22

1 − ρ1c(q)

)
e−q2r2

L1(1−ρ1c(q))/6
)]

=

∫
dq

(2π)3
q2e−q2r2

L1/6
[
A + Be−q2r2

L1(1−ρ1c(q))/6
]

. (B1)

In the final equality, the factors A and B are defined. After
major simplifications using the equilibrium relations of OZ
mixture theory, these factors are given by

A =
c(q)S12

ρ1 (1 − ρ1c(q))
,

B =
ρ1c(q)2

1 − ρ1c(q)
.

(B2)

Employing the above results yields Eq. (14) of the main
text. The corresponding dynamic free energy follows as in
prior work for 1-component systems,7,10 thereby yielding
Eq. (15).

APPENDIX C: ULTRA-LOCAL ANALYTIC ANALYSIS

The analytic results presented in Sec. III C are derived
in precisely the same way discussed in detail previously for
the 1-component hard sphere fluid.45 The key idea is high
wavevector dominance of the dynamic force correlation ver-
tex in NMCT and the dynamic free energy of NLE the-
ory. The important technical elements are as follows: (1) the
wavevector integral below a cutoff qc can be ignored, (2)
for q ≥ qc, one can exploit the exact PY theory result45,49

c(q) = −4πd3g(d)
cos qd

(qd)2
, and (3) S12(q) is approximated by

its high wavevector limit

S12(q) =
ρ1ρ2c(q)
1 − ρc(q)

≈ ρ1ρ2c(q). (C1)

Substituting the analytical expressions of c(q) and S12(q)
into Eq. (B1) gives

9

r2
L

≈

∫ ∞
qc

q4dq

2π2
e−q2r2

L/6
[
ρ2c2(q) + ρ1c2(q)e−q2r2

L/6
]

≈
24g2(d)Φ

π

∫ ∞
qc

dqe−q2r2
L/6

[
α + (1 − α)e−q2r2

L/6
]

. (C2)

One then obtains
√

3πd

4rLΦg2(d)
=

[
√

2αerfc

(
qcrL
√

6

)
+ (1 − α)erfc

(
qcrL
√

3

)]
.

(C3)

Now, if qcd/
√

3 � 1, the above equation can be explicitly
solved,

rL(α) =

√
3π

4Φg2(d)

1

1 + α(
√

2 − 1)
=

rL(0)

1 + α(
√

2 − 1)
. (C4)

As sketched in Sec. III C, a similar analysis can be per-
formed for the barrier location and dynamic shear modulus.
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Straightforward algebra yields for the latter

G(α) =
kBT

120π2

∫ ∞
0

dq
(
4πg(d)d2

)2(
ρ2

1e−q2r2
L/3 + ρ1ρ2e−q2r2

L/6
)

=
9ΦkBT (1 − α)

5πdr2
L(α)

. (C5)
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