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Comment on “Orientation dependence of the optical spectra in graphene at high frequencies”
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Zhang et al. [Phys. Rev. B 77, 241402(R) (2008)] reported a theoretical study of the optical spectra of monolayer
graphene employing the Kubo formula within a tight-binding model. Their calculations predicted that at high
frequencies the optical conductivity of graphene becomes strongly anisotropic. In particular, at frequencies
comparable to the energy separation of the upper and lower bands at the � point, the optical conductivity is
strongly suppressed if the field polarization is along the zigzag direction whereas it is significantly high for the
armchair one. We find that, unfortunately, this result is just a consequence of the incorrect determination of the
current operator in k space. Here, we present a standard scheme to obtain this operator correctly. As a result, we
show that the optical conductivity of monolayer graphene is indeed isotropic, which is consistent with the results
of other (both theoretical and experimental) studies in the literature.
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The current operation is key ingredient in the calculation of
optical spectra from the Kubo formula. For a periodic system,
it is most convenient to evaluate this quantity using the k-space
representation of the Hamiltonian and the corresponding
Bloch wave functions. For graphene, the use of pz-orbital
tight-binding models has been shown to provide a good
description of electronic states for many purposes. However,
for monolayer graphene where C atoms are arranged in a
honeycomb lattice with the unit cell containing two atoms,
there are two tight-binding bases widely used in the literature.
Because of this, care must be taken in order to avoid the use
of inappropriate forms of certain operators which may lead to
erroneous physical predictions as already noted in Ref. [1]. In
particular, the momentum operator p for a periodic system has
often been determined by [2]

p = m0

�
∇kH (k), (1)

where m0 is the free-electron mass and ∇kH (k) is the gra-
dient of the k-dependence representation of the Hamiltonian.
Obviously, the form of H (k) is not unique in that it depends
on the tight-binding basis used [1] or even on the choice of
unit cell [3]. Hence, one can get different results computing
p from Eq. (1). One way to avoid this issue and to correctly
achieve the k-dependence representation of operators is to use
their original definitions and then represent them in k space
as exemplified by the calculation of the current operator in
graphene below.

We start from the standard formula of the current operator
within an independent electron approximation,

j = ev = e

m0
p, (2)

p = m0

i�
[r,H ]. (3)

The tight-binding Hamiltonian in the first nearest-neighbor
approximation is written as

H = −t
∑
R,δ

c
†
RcR+δ, (4)

where c
†
R and cR+δ are creation and annihilation operators,

respectively, for pz electrons located at site R and its first
nearest-neighbors R + δ. Then, the current operator is

j = −i
et

�

∑
R,δ

δc
†
RcR+δ. (5)

Actually, this expression can also be obtained following
another scheme by introducing the vector potential A in
the tight-binding Hamiltonian in Eq. (4). Using the Peierls
substitution,

tij → tij e
−i(e/�)A·(rj −ri ), (6)

the current operator is then determined by

j = −∂H [A]

∂A

∣∣∣∣
A→0

, (7)

which leads to an identical formula as in Eq. (5).
In monolayer graphene with two atoms in its primitive cell,

these operators can be rewritten in the following forms:

H =
∑
nm

(
Hnm + Hnm,±t1 + Hnm,±t2

)
,

Hnm = −t
(
a
†
Rnm

bRnm−δ3 + b
†
Rnm−δ3

aRnm

)
,

Hnm,t1,2 = −tb
†
Rnm−δ3

aRnm+t1,2 ,

Hnm,−t1,2 = −ta
†
Rnm

bRnm−δ3−t1,2 , (8)

and

j =
∑
nm

(
jnm + jnm,±t1 + jnm,±t2

)
,

jnm = i
et

�
δ3

(
a
†
Rnm

bRnm−δ3 − b
†
Rnm−δ3

aRnm

)
,

jnm,t1,2 = −i
et

�
δ1,2b

†
Rnm−δ3

aRnm+t1,2 ,

jnm,−t1,2 = i
et

�
δ1,2a

†
Rnm

bRnm−δ3−t1,2 , (9)
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FIG. 1. Schematic of a graphene lattice with the conventions for
vectors t1,2 and δ1–3 used in the text.

where Rnm = nt1 + mt2, δ3 = −(t1 + t2)/3, and δ1,2 =
t1,2 + δ3 and t1,2 are two primitive lattice vectors (see
Fig. 1). Here we have distinguished two types of creation
and annihilation operators: a†,a for atoms in sublattice A and
b†,b for atoms in sublattice B.

As mentioned in Ref. [1], there are two tight-binding bases
most commonly used to describe graphene in the literature.
Accordingly, there are two forms of the Fourier transformation
for a and b operators,

anm = 1√
Ncell

∑
k

ake
ik·(Rnm+ra ), (10)

bnm = 1√
Ncell

∑
k

bke
ik·(Rnm+rb), (11)

and

anm = 1√
Ncell

∑
k

ãke
ik·Rnm , (12)

bnm = 1√
Ncell

∑
k

b̃ke
ik·Rnm , (13)

with Ncell being the number of periodic (primitive) cells.
With these two Fourier transformations, the Hamiltonian (8)
is rewritten in two different k-dependent forms, respectively,

H = −t
∑

k

[h(k)b†kak + H.c.], (14)

H = −t
∑

k

[h̃(k)b̃†kãk + H.c.], (15)

where h(k) = eik·δ1 + eik·δ2 + eik·δ3 and h̃(k) = eik·t1 +
eik·t2 + 1 ≡ e−ik·δ3h(k). Similarly, the current operator (9) is

rewritten in two different forms, respectively,

j = −et

�

∑
k

[g(k)b†kak + H.c.], (16)

j = −et

�

∑
k

[g̃(k)b̃†kãk + H.c.], (17)

where g(k) = i(δ1e
ik·δ1 + δ2e

ik·δ2 + δ3e
ik·δ3 ) and g̃(k) =

i(δ1e
ik·t1 + δ2e

ik·t2 + δ3) ≡ e−ik·δ3 g(k).
Now, the Hamiltonians in Eqs. (14) and (15) are solved

to compute their eigenvalues and eigenfunctions. In both
cases, one obtains the same eigenvalue εs(k) = st |h(k)| ≡
st |h̃(k)| with s = ±1 for the conduction/valence bands,
respectively. The corresponding eigenfunction has the form

ψs(k) = 1√
2
(−seiθk

1
) where eiθk = h(k)/|h(k)| and h̃(k)/|h̃(k)|,

respectively, for the Hamiltonians (14) and (15). Using these
eigenfunctions, one can make a transformation to recast the
Hamiltonians (14) and (15) and the current operators (16) and
(17) to the following forms:

H =
∑
k,s

εs(k)c†k,sck,s , (18)

j = et

�

∑
k,s

s
Re{h∗(k)g(k)}

|h(k)| c
†
k,sck,s

+ i
et

�

∑
k,s

s
Im{h∗(k)g(k)}

|h(k)| c+
k,sck,−s . (19)

Note that, similar to the case of the Hamiltonian operator
[Eq. (18)], one obtains the same formula for the current
operator [Eq. (19)] regardless of the Fourier transformations
used because h∗(k)g(k) ≡ h̃∗(k)g̃(k). This is consistent with
the remarks in Ref. [1] that, if all operators are represented in
the same basis, the expectation value of observable quantities
is independent of the tight-binding basis. Since

h∗(k)g(k) = i

{
δ1 + δ2 + δ3 + δ1e

ikyr0 + δ2e
−iky r0

+
[
δ1 exp

(
i
kyr0

2

)
+ δ2 exp

(
−i

kyr0

2

)]

× exp

(
i
kxr0

√
3

2

)

+ 2δ3 cos

(
kyr0

2

)
exp

(
−i

kxr0

√
3

2

)}
,

after some straightforward manipulations, one ends up with
the following expressions for the current operator:

jx = −2evF

∑
k,s

s
cos

( kyr0

2

)
sin

(
kxr0

√
3

2

)
|h(k)| c

†
k,sck,s

+ i
2evF

3

∑
k,s

s
cos(kyr0) − cos

( kyr0

2

)
cos

(
kxr0

√
3

2

)
|h(k)|

× c
†
k,sck,−s ,
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FIG. 2. Corrected optical conductivity in comparison with the
calculations of Zhang et al. in Ref. [4] (σ0 = e2/4�).

jy = −2evF√
3

∑
k,s

s
sin(kyr0) + sin

( kyr0

2

)
cos

(
kxr0

√
3

2

)
|h(k)| c

†
k,sck,s

− i
2evF√

3

∑
k,s

s
sin

( kyr0

2

)
sin

(
kxr0

√
3

2

)
|h(k)| c

†
k,sck,−s ,

where r0 denotes the C-C bond length in graphene.
Compared to the expressions for current operator presented

by Zhang et al. in Ref. [4], the jy component obtained
here is identical to theirs, but it is not the case for the
jx component. We note that, even though the jx and jy

components have different k dependences, the integral over
the whole Brillouin zone in the Kubo formula [5,6] gives the
same optical conductivities σxx and σyy as displayed in Fig. 2,
i.e., the optical spectra of graphene is indeed isotropic, which
is at variance with the anisotropic behavior shown in the cal-
culations by Zhang et al. [4]. Additionally, the value of optical
conductivity in the low-frequency limit reported in Ref. [4]

is e2/2�, which is twice the well-known value of σ0 = e2/4�

for monolayer graphene [7]. Note that our obtained results
are in good agreement with those reported (both theoretically
with different methods [5,6,8,9] and experimentally [7]) in the
literature. The anisotropy of optical spectra can be achieved
only if the symmetry properties of the graphene lattice are
broken, e.g., by strain effects as demonstrated in Ref. [6].

In Ref. [4], the authors provided no information on how
the current operator was actually calculated. However, one
could reproduce their expressions for jx,y when using the
formula jμ = e

�

∂H
∂kμ

—indeed used by Zhang et al. [4] in
other studies [10,11]—with the Hamiltonian in Eq. (1) of
Ref. [4] [i.e., Eq. (15) here]. Obviously, jμ determined in
this way is not correct because ∂h̃(k)/∂kμ is not identical to
g̃μ(k). The expression for the jy component in Ref. [4] is
fortuitously correct just because the y component of vectors
t1,2 are identical to that of vectors δ1,2, respectively, whereas
δ3y = 0. Hence, we speculate that the use of the formula
jμ = e

�

∂H
∂kμ

with the Hamiltonian in Eq. (15) is the origin
of the erroneous results obtained by Zhang et al. [4]. We
would like to note additionally that the use of this incorrect
determination of the current operator results in the unit-cell
dependence of optical matrix elements (see Fig. 3(a) and
Ref. [3]). Basically, the calculations using supercells lead to
the band folding compared to that of a primitive cell. Using
the incorrect formulas of the current operators can allow for
unphysical transitions between the folding bands and hence
gives the wrong results at high energies [see Fig. 3(a)]. The
authors in Ref. [3] tried to use group-theoretic arguments to
demonstrate that one would obtain incorrect results if the
unit cell chosen does not incorporate the symmetries of the
bulk. Physically, these arguments do not sound reasonable to
us as any change in the unit cell only leads to a change in
the matrix representation of the operators and the calculated
results should be, in principle, unchanged if the operators in the
k space are correctly determined. This is actually confirmed
by the data presented in Fig. 3(b) where our calculations were
performed using the current operators determined from the
original formula in Eq. (5).

FIG. 3. (a) Incorrect unit-cell dependence of optical conductivity obtained using the scheme as in Refs. [3,4], in comparison with (b) the
correct ones obtained using the scheme presented in this Comment (σ0 = e2/4�).
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Thus, in order to achieve the correct formula for the current
operator in the k space, we recommend that one should perform
the Fourier transform with its original formula in real space
[i.e., Eq. (5)] or use the formula (7) with Peierls substitution in
Eq. (6). In this way, the obtained results should depend neither
on the tight-binding basis nor on the unit cell. This is because
the use of another tight-binding basis or unit cell only leads
to a change in the matrix representation of the operators and
hence the expectation value of observable quantities should
always be correctly achieved. However, there are some specific
quantities determined directly from the Hamiltonian in the k

space and the phase of the Bloch wave functions, e.g., the Berry
connection and Berry curvature. In such cases, it has been
demonstrated in Ref. [12] that only the Fourier transformation
in Eqs. (10) and (11) gives the correct results. Similarly, the
current operator in Eq. (16) can be also obtained correctly by
using the formula jμ = e

�

∂H
∂kμ

with the Hamiltonian in Eq. (14),

i.e., ∂h(k)/∂kμ is indeed identical to gμ(k). In such cases, e
�

∂H
∂k

is indeed identical to − ∂H [A]
∂A |A→0.

To conclude, we have shown that the anisotropicity of
the optical spectra reported by Zhang et al. in Ref. [4] is

just a consequence of the incorrect determination of the
current operator in the k space. Starting from the original
definition of the current operator, we present a scheme to
correctly obtain its formula in the k space, regardless of
the tight-binding basis as well as the choice of unit cell
used in the calculations. Our Comment thus emphasizes a
simple but subtle and fundamental remark which will be of
useful to researchers working with tight-binding calculations,
particularly, in graphene and its derivatives.
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