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We use Wang-Landau and replica exchange techniques to study the effect of an increasing stiffness on
the formation of secondary structures in protein-like systems. Two possible models are considered.
In both models, a polymer chain is formed by tethered beads where non-consecutive backbone beads
attract each other via a square-well potential representing the tendency of the chain to fold. In
addition, smaller hard spheres are attached to each non-terminal backbone bead along the direction
normal to the chain to mimic the steric hindrance of side chains in real proteins. The two models,
however, differ in the way bending rigidity is enforced. In the first model, partial overlap between
consecutive beads is allowed. This reduces the possible bending angle between consecutive bonds
thus producing an effective entropic stiffness that competes with a short-range attraction, and leads
to the formation of secondary structures characteristic of proteins. We discuss the low-temperature
phase diagram as a function of increasing interpenetration and find a transition from a planar, beta-like
structure, to helical shape. In the second model, an energetic stiffness is explicitly introduced by
imposing an infinitely large energy penalty for bending above a critical angle between consecutive
bonds, and no penalty below it. The low-temperature phase of this model does not show any sign of
protein-like secondary structures. At intermediate temperatures, however, where the chain is still in
the coil conformation but stiffness is significant, we find the two models to predict a quite similar
dependence of the persistence length as a function of the stiffness. This behaviour is rationalized
in terms of a simple geometrical mapping between the two models. Finally, we discuss the effect
of shrinking side chains to zero and find the above mapping to still hold true. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4961387]

I. INTRODUCTION

Synthetic and biological polymers are always charac-
terized by a certain degree of intrinsic stiffness, and hence
fall within the general class of the so-called semiflexible
polymers.1–3 Sometimes, however, stiffness is neglected to
first approximation, often because there exist other constraints
concurring to provide an effective stiffness, thus rendering
redundant its explicit inclusion.

In a discrete representation, a polymer can be modelled as
a sequence of tethered beads where beads represent monomers,
and connectivity between consecutive beads represents the
effect of covalent chemical bonds holding the polymer
together. In the simplest representation, angles between
successive chain segments are uncorrelated, and the polymer
is viewed as a Brownian curve, with a spherical symmetric
evolution. A slightly more realistic representation includes
the excluded volume constraint accounting for the fact that
non-consecutive beads (i.e., monomers) cannot overlap being
hard-core objects. This however does not break the spherical
symmetry of the chain, in the sense that each bead can have any

a)Electronic mail: tatjana.skrbic@unive.it
b)Electronic mail: hoang@iop.vast.ac.vn
c)Electronic mail: achille.giacometti@unive.it

position in space that does not violate both the connectivity
and the excluded volume constraints. For this case, the
Edwards continuum model has been traditionally regarded
as the paradigmatic description able to provide qualitative
prediction of the phase diagram. A flexible polymer in a good
solvent can thus be described by tethered beads model, or by
the Edwards model in its continuum version,4 in which only
repulsive interactions, due to excluded volume, are enforced.
The effect of a change in the solvent quality and/or by a
decrease in the temperature can be captured by introducing
an additional short-range attraction between non-consecutive
beads (i.e., monomers), so there is a tendency of the polymer
to collapse to a globular state that is counterbalanced by the
excluded volume repulsion. At the mean-field level, these
competitive interactions can be modelled by the well-known
Flory theory of polymers.5 As the introduced short-range
attraction is still spherically symmetric, the isotropy condition
is preserved even under these more general conditions.

Many polymeric molecules, however, exhibit internal
stiffness, as remarked. In this case, the angles between two
successive segments are no longer uncorrelated, as in the case
of flexible chains, but display nonvanishing correlations.5,6 For
these systems, usually referred to as semi-flexible polymers,
the simplest and most popular description is given by

0021-9606/2016/145(8)/084904/10/$30.00 145, 084904-1 Published by AIP Publishing.
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the so-called worm-like-chain (WLC) model, where there
is an energy penalty in forming an angle between two
successive segments of the chain. Note that this constraint
breaks the spherical symmetry present in flexible polymers.
Spatial correlation along the chain decays exponentially, thus
introducing a persistence length, above which the chain is still
uncorrelated, and hence flexible, which is directly related to
the stiffness parameter.

A typical example of stiff biopolymer is provided by
DNA, whose hybridized double strand form has a persistence
length typically 100 times larger than that corresponding to
each single strand.7 This property affects the corresponding
phase diagram whose collapsed phase is found to be either
a toroid or a rod-like phase, unlike the zero-stiffness flexible
case that is found to be a compact globule.8–12

Native compact states in globular proteins are found
within a rather different framework.13 Here, polypeptide
chains can still be regarded as bio-polymers displaying a
high-temperature coil (swollen) phase, and a low-temperature
collapsed phase, but with a number of specific features that
drastically reduce the number of possible conformations, thus
driving to a unique collapsed target conformation. While the
precise mechanism with which this is achieved in real proteins
is still to be fully understood, few ingredients are universally
accepted to be part of this mechanism. One is the existence of
directional interactions (i.e., hydrogen bonds) that are broken
with the solvent and reformed within the protein backbone,
upon collapse. Within the implicit model description used
in the present paper, this amounts to breaking the spherical
symmetry of the interactions alluded earlier.14,15 A second
crucial feature making a polypeptide chain very different from
a synthetic polymer is given by the presence of side chains
that stick out in a plane normal to the protein backbone. As a
matter-of-fact, the primary structure of a protein is formed by
a sequence of aminoacid residues whose structure is always
the same apart from the side chains whose specificities can be
extracted from an alphabet of 20 possible letters.13 Different
side chains give rise to different directional interactions, as
well as to different packing constraints as they must be
accommodated upon folding in a way to avoid steric clashes.

In a previous work,16 we have analyzed the consequences
of the inclusion of both constraints on the phase diagram
of the folded phase. The first constraint was enforced via
partial overlapping of consecutive beads, while the second by
introducing smaller dummy (i.e., inert hard spheres) spherical
beads, mimicking the steric hindrance of side chains, at
appropriate positions. It was found that a combination of
both these ingredients was able to account for the presence
of stable secondary structures, such as helices and beta-like
sheets, while each of them, taken singularly, was likely to run
into kinetic trapping issues.

In this paper, we build on this idea and study the detailed
reason behind these results. We find that the combination
of the two ingredients promotes an effective stiffness that
drives the correct folding, and we quantified the dependence
of the persistence length as a function of temperature and
interpenetration. Finally, we compare with results stemming
from an alternative way of inducing an effective stiffness and
discuss the compatibility of the two models.

The plan of the paper is as follows.
In Section II we introduce the model and how this induces

a bending rigidity. Section III gives a brief review of the
numerical methods employed, as well as the order parameters
used to discriminate between the phases. Sections IV and
V discuss the dependence of the persistence length on
temperature, local interpenetration, and chain length. Finally,
Section VI reports a comparison with the model in which
there is an infinite energy penalty for large bending and
Section VII draws some conclusions and discusses open
future perspectives.

II. INDUCING EFFECTIVE STIFFNESS IN A POLYMER
CHAIN MODEL

A common representation of a polymer is provided
by a sequence of N beads (monomers), placed at position
{r1,r2, . . . ,rN} in space, each of diameter σ, connected
by a tethering potential holding consecutive beads at a
fixed distance b.1–3 Excluded volume and solvent effects
are accounted for via an additional potential ensuring that
non-consecutive beads cannot interpenetrate and attract each
other with an energy ϵ provided that their relative distance is
not larger than the interaction range Rc = λσ, where λ > 1.
This additional hard-core square-well (SW) potential can then
be written

φ (r) =



+∞, r < σ

−ϵ, σ < r < Rc ≡ λσ

0, r > λσ

. (1)

The model is further defined by imposing the additional
constraint that the monomer-monomer distance b coincides
with the bead diameter σ, so that consecutive beads are
tangent to each other (b/σ = 1). In this case, each monomer
can assume any position in space, provided the connectivity
constraint is satisfied. This spherical symmetry combines
with the connectivity constraint to produce a flexible polymer.
An effective stiffness can however be induced by allowing
partial interpenetration between consecutive spheres, so that
b/σ < 1.16–19 This breaks the spherical symmetry and gives
rise to an effective stiffness as explained in the cartoon of
Figure 1. We will refer to this situation as an entropic
stiffness. Let us introduce the bond variable τ j = r j − r j−1
so that |τ | = b. A flexible chain is identified by the absence of

FIG. 1. Effect of partial interpenetration between consecutive monomers for
a triplet. (Left) b/σ = 1 so the maximum bond angle θ0 is 120◦. (Right)
b/σ < 1 so the maximum angle is θ0 < 120◦.
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any correlation between any two bonds


τi · τ j

�
= b2δi j, (2)

where the average ⟨. . .⟩ is over all the possible configurations
of the polymer. A more realistic representation of the polymer
is given by the so-called worm-like-chain (WLC) model
(also called Kratky-Porod model)3 and describes a semi-
flexible polymer. Instead of free joints, the WLC model
admits an energetic penalty every time two consecutive
bonds are not parallel. Denoting by θ the angle between two
consecutive bonds, the WLC model assumes a bending energy
proportional to 1 − cos θ, with a proportionality constant K
(the stiffness) having dimensions of an energy times a length
Lp. The latter can be identified as the persistent length, the
characteristic length appearing in the decay of the tangent-
tangent correlation function along the chain (see below).

In discussing the tangent-tangent correlations, it proves
convenient to identify the axis of the chain by a curve
coordinate r(s) parameterized by its arc length s, that is, the
continuum version of r j and s j = jb previously introduced,
respectively. Calculations can then be performed in an efficient
way by referring to a particular Frenet frame of unit vectors
{T̂(s),N̂(s), B̂(s)} for the tangent, normal, and binormal,
respectively, that are defined as follows:

T̂ (s) = r′ (s)
∥r′ (s) ∥ ,

N̂ (s) = T̂′ (s)
∥T̂′ (s) ∥ ,

B̂ (s) = T̂ (s) × N̂ (s) .

(3)

Here primes denote the derivative with respect to the argument.
The Frenet-Serret local coordinates are related by the Frenet-
Serret equations20,21

∂T (s)
∂s

= κ (s)N (s) ,
∂N (s)
∂s

= −κ (s)T (s) + τ (s)B (s) ,
∂B (s)
∂s

= −τ (s)N (s) .

(4)

These equations automatically define the curvature κ(s) and
the torsion τ(s) as given in the first and the last equations of
(4). In numerical calculations, however, the discrete version
of the Frenet-Serret coordinates and equations will be used.
Denoting

Ti =
τi + τi+1

|τi + τi+1| (5)

as the unit vector associated with the bond length
τi, translational invariance suggests the tangent-tangent
correlations ⟨Ti · T j⟩ ≡ ⟨T|i− j | · T(0)⟩ to depend only upon
the difference si j ≡ |si − s j |, so thatT (s) · T (0) ∼ exp


− s

Lp


. (6)

For a flexible chain, the persistence length Lp ∼ b as the
correlation (6) drops to zero after a length of the order of a
single monomer. In this case, the maximum angle between two

consecutive bonds can be as large as θ0 = 120◦, as illustrated
in Figure 1 (Left). However, if partial interpenetration between
two consecutive monomers is allowed, so that b/σ < 1, then

θ0

2
= arccos

(
σ

2b

)
(7)

thus translating into an effective entropic stiffness whose
strength depends upon the ratio b/σ < 1 and ranges between
b/σ = 1 (flexible polymer) and b/σ = 1/2 (infinitely stiff
polymer). As we shall see, this idea is confirmed by explicit
calculations.

While the above effect is sufficient to break the spherical
symmetry of the chain, simulations carried out in previous
work showed this model to be prone to kinetic trapping
effects, and in such case the system often gets trapped in long
living metastable configurations, especially for long chains.
In a previous paper,16 we have shown that this problem can
be overcome by introducing smaller beads, having diameter
σs < σ, and positioned along the chain so to mimic the side
chains in real proteins.

For each of non-terminal backbone beads, one defines a
normal vector as

Ni =
τi+1 − τi
|τi+1 − τi | , (8)

where i = 2, . . . ,N − 1. The corresponding binormal vector is
then given by

Bi = Ti × Ni. (9)

Note that {Bi,Ti,Ni}, (i = 2, . . . ,N − 1) are the discretized
version of the Frenet-Serret local coordinates given in Eqs. (4)
that are frequently used in the continuum approach of the
polymer theory.5,15,21

To each backbone bead, a side chain bead is attached in
the anti-normal direction with the position given by

r(s)i = ri − Ni(σ + σs)/2. (10)

The potentials involving side chain beads are just hardcore
repulsions that vanish when σs → 0.

Following the convention set out in our previous paper,16

we shall refer to this model as the overlapping polymer with
side chains (OPSCs).

III. NUMERICAL APPROACHES

Our numerical approach hinges on a combination of two
different methods, the microcanonical Wang-Landau (WL)22

and the canonical replica exchange23,24 Here, we summarize
the main points of both methods, referring to our previous
work,16 as well as references therein, for additional details.

A. The Wang-Landau (WL) approach

Aim of the WL approach is to compute the density of
states g(E) in the micro-canonical ensemble, from which
the whole thermodynamics can be derived in terms of the
canonical partition function

Z (T) =

E

g (E) e−E/(kBT ), (11)
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where kB is the Boltzmann constant.
In order to compute g(E) in WL method22,25–27 we

sample polymer conformations according to micro-canonical
distribution, by generating a sequence of chain conformations
A → B and accepting new configuration B with the micro-
canonical acceptance probability

Pacc(A → B) = min
(
1,

wB g(EA)
wA g(EB)

)
, (12)

where wA and wB are weight factors ensuring the microscopic
reversibility of the moves. The set of Monte Carlo (MC) moves
that are accepted or rejected according to the probability
(12) includes both local-type moves, such as single-bead
crankshaft, reptation, and end-point, as well as non-local-type
moves, as for instance pivot, bond-bridging, and back-bite
moves, randomly sampled so that on average N beads (or a
multiple of it) are moved to complete a MC step.

The required density of states g(E) is then constructed
iteratively, by filling suitable energy histograms and
controlling their flatness. We typically assume convergence
after 30 levels of iterations, corresponding to a multiplicative
factor value of f = 10−9.

B. The replica exchange approach

Unlike the WL method, the replica exchange (also known
as Parallel Tempering) method28,29 is set in the canonical
ensemble, where individual MC runs carried out at a fixed
temperature23,24 are computed in parallel and periodically
swapped with one another to overcome high energy barriers
typical of complex energy landscapes, as one expects in the
present case. A temperature annealing schedule is defined
and temperature swapping is allowed only within neighboring
temperatures.

Given two replicas, Γi and Γj, at temperatures Ti and Tj,
respectively, the swap move leads to a new state, in which Γi
is at Tj and Γj is at Ti with acceptance probability given by
the detailed balance condition,

Pswap = min
(
1,exp

(
1

kBTi
− 1

kBTj

)
(Ei − E j)

)
. (13)

The choice of replicas to perform an exchange can be
arbitrary, but for a pair of temperatures, for which replicas
are exchanged, the number of swap move trials must be
large enough to ensure good statistics. The optimal efficiency
of a parallel tempering scheme is still matter of debate as
it depends on the number of replicas, the set of chosen
neighboring temperatures, and also on the frequency with
which the swap moves are attempted. It has been suggested
that for the best performance, the acceptance rate of swap
moves must be about 20%.30

C. Order parameters

Order parameters are instrumental in identifying and
discriminating between different phases. In the present case,
a number of different order parameters can be envisaged.

Firstly, we use the specific heat per monomer CV/(N kB)
to pin down the critical temperature Tc of the transition.16 This

however does not tell us what kind of low-temperature phase
is obtained, so additional order parameters have been selected
in order to highlight them, as elaborated below.

For the helical phase, the simplest order parameter
distinguishing it from a coil configuration is the torsion τ(s),
introduced in the Frenet-Serret Eqs. (4). An explicit definition
of the torsion τ(s) can be given in terms of the derivative of T
as

τ (s) =
(T(s) × T(1)(s)) · T(2)(s)

���T
(1)(s) × T(2)(s)���

2 , (14)

where we have defined

T(n)(s) ≡ ∂nT(s)
∂sn

. (15)

We will be following the prescription given in Ref. 18 to
discretize the above derivatives along the lines set in Eq. (5)
and obtain the probability distribution p(τ) as a function of
the temperature, as well as the average torsion

τ =
1
L

 L

0
ds τ (s) . (16)

While a coil phase is characterized by a single mode
distribution peaked around τ = 0, a helix phase is associated
with a bimodal distribution of p(τ) peaked at two symmetric
values, one positive and one negative, corresponding to the
two possible enantiomers, right and left helices.

Another order parameter indicating the formation of
planar, beta-like structures is given by the average triple
scalar product ⟨Ni · (N j × Nk)⟩ between any triplet of normal
vectors that vanishes in a planar structure and is non-zero
otherwise.

Finally, we will also monitor the average squared radius
of gyration, which can be obtained in the WL approach via
the density of state g(E) as

R2
g(T)


=


E


R2
g


E
g (E) e−E/(kBT ) (17)

and that is large in the coil configuration and small in
the globular phase. Hence, it can be reckoned as an order
parameter for the globular phase. In Eq. (17) ⟨R2

g⟩E is the
average radius of gyration at fixed energy E.

IV. ENTROPIC STIFFNESS OF THE OPSC

We study chains composed by N monomers (amino-acid
residues in protein language), having a size of σ = 6 Å, with
size of the side chains set at σs = 5.0 Å. Using the former as
unit of length, we obtain a ratio σs/σ ≈ 0.83, and for the full
range of the monomer-monomer distance 1/2 ≤ b/σ ≤ 1, the
two extreme values representing the infinitely stiff and flexible
polymers. The range of the attractive square-well potential will
be set to Rc = 7 Å ≈ 1.167σ in all simulations.31

Different values of b/σ and of N will be considered.
The former will affect the effective stiffness of the chain and
hence the corresponding phase diagram, as anticipated. The
latter is related to the issue of the finite size affecting the
thermodynamic limit.
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FIG. 2. (Left panel) The torsion probability distribution p(τ) as a function of the torsion τ for reduced temperature kBT /ϵ above and below the critical
one. (Center panel) The average triple scalar product ⟨Ni · (N j×Nk)⟩ as a function of the reduced temperature kBT /ϵ, indicative of the coil-planar structure
transition. (Right panel) The average radius of gyration ⟨R2

g (T )⟩ as a function of the reduced temperature kBT /ϵ, indicative of the coil-globule transition.

As one cools down from high temperatures kBT/ϵ ≈ 1
to well below a critical temperature kBTc/ϵ , a transition
from a swollen (coil) phase to a low temperature phase is
observed as signalled by appropriate order parameter. The
actual phase observed depends upon the considered b/σ, as
illustrated in Figures 2 and 3 for N = 20. Consider the flexible
case b/σ = 1 first, whose appropriate order parameter is the
radius of gyration ⟨R2

g(T)⟩. This is reported in right panel
of Figure 2 where a sudden drop of ⟨R2

g(T)⟩ is observed at
kBTc/ϵ ≈ 0.3, characteristic of the collapsed globular phase,
as depicted in the corresponding phase diagram of Figure 3
(right). Interestingly, here the presence of side chains appears
to be rather ininfluent to the phase behavior, in agreement
with the analysis reported in previous work.16

Upon decreasing the ratio down to b/σ = 0.85, a planar
low-temperature phase is observed below kBTc/ϵ ≈ 0.3, as
signalled by a drop in the average triple scalar product
⟨Ni · (N j × Nk)⟩ of Figure 2 central panel. The corresponding
phase diagram is reported also in the central panel of Figure 3,
with a representative snapshot illustrating the snake-like
conformation of the chain roughly confined into a plane.
This behavior is reminiscent of the β-sheet formation in
real proteins and can be reckoned as a direct consequence
of the increased stiffness represented by b/σ < 1 caused by
increased penetrability between consecutive monomers. This,
in turn, breaks the spherical symmetry and induces a well
defined secondary structure. For even lower ratio b/σ = 0.65,
a coil-helix transition is observed, as identified by the onset
of a bimodal distribution symmetrically peaked around τ = 0
below a critical temperature kBTc/ϵ ≈ 0.7, as displayed in
the left panel of Figure 2. The corresponding phase diagram

is then reported in Figure 3 left, where a representative
snapshot of the obtained helical phase is also depicted. As
in the previous case, this helical phase is reminiscent of the
α–helices found in real proteins. While in the b/σ = 0.85
case, the coil-planar structural transition can be regarded
as an effective dimensionality reduction stemming from the
symmetry breaking induced by the overlapping of consecutive
beads along the chain, the b/σ = 0.65 case is to be regarded
as a chiral breaking from a unimodal to a bimodal torsional
distribution, corresponding to the two, a priori equivalent,
handedness of the helices.

A coil-helix transition can be experimentally measured
using various techniques,32 and its analysis can be performed
by using simple spin models.33–35

V. THE PERSISTENCE LENGTH

Both the coil-planar and the coil-helix transitions
observed in the phase diagrams of Fig. 3 occur at a
specific temperature, denoted as Tc, and are associated to
a thermodynamic discontinuity of the system represented by a
sharp peak in the specific heat. This was explained elsewhere16

and will not be repeated here.
In the coil-helix transition case, however, an additional

interesting feature occurs. Figure 4 reports the computed
tangent-tangent correlation function ⟨T(s) · T(0)⟩ as a function
of the sequence separation s, as the temperature decreases from
above T/Tc > 1 to below T/Tc < 1 the critical temperature Tc.
Well above the critical temperature (T/Tc = 2), the tangent-
tangent correlation function exponentially decays, as expected
from Eq. (6). However, the decay occurs over a length

FIG. 3. Phase behaviour of the OPSC model as a function of the temperature and the penetrability ratio. (Right panel) The case flexible b/σ = 1 where the low
temperature phase is a globule. (Central panel) The weak penetrability case b/σ = 0.85 where the low temperature phase is planar-like, reminiscent of β− sheet
phases in real proteins. (Left panel) The strong penetrability case b/σ = 0.65 where the low temperature phase is helix-like, reminiscent of the α–helices in real
proteins. In all cases, we have used N = 20 for the number of monomers.
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FIG. 4. (Left) The average tangent-tangent correlation function ⟨T(s) ·T(0)⟩ as a function of the sequence separation s along the chain, for decreasing
temperatures across the critical temperature. Here b/σ = 0.65 and N = 40. (Right) Representative snapshots of the obtained configurations.

scale significantly longer than b ≈ σ, as would occur in
a flexible chain. Slightly above the critical temperature at
T/Tc ≈ 1.1, the tangent-tangent correlation starts to display
oscillatory behaviour characteristic of a helix, as it will be
further discussed below. The period of the oscillation is a
measure of the pitch P of the helix and remains constant
as temperature decreases. Upon cooling below the critical
temperature, the amplitude of the oscillations increases and
decays more slowly across the chain, thus indicating an
increase in the effective stiffness of the polymer. Interestingly,
oscillations start already at a temperature TFW > Tc indicating
the presence of a structural change before the occurrence of a
thermodynamic phase transition.

The oscillatory behavior can be readily rationalized in
terms of an elementary analysis reported in the Appendix for
an ideal helix. As detailed in the Appendix, the tangent-tangent
correlation in a helix clearly oscillates around of an average
value 1/(1 + 4π2/c2), where c = P/R, R and P being the
radius and pitch of the helix, respectively.

Note that the amplitude of the oscillation ∆Fc given by
Eq. (A10) depends only upon the combination c and not
upon the single R and P values. This feature was already
observed in a different, albeit related, context.15,36 However,
Figure 9 clearly illustrates how the period of oscillation is
a direct measure of the helix pitch P. In combination with
the amplitude ∆Fc, it provides a measure of both R and P
separately.

The moniker of Fisher-Widom (FW) given to temperature
TFW stems from the fact that this behavior is echoing a
similar behavior in liquid theory, usually denoted as a Fisher-
Widom line (or point), that can be ascribed to a structural

transition originating from the incipient structural ordering.
This is not, however, associated with any discontinuity in
thermodynamics, as it is the transition at Tc associated
with a peak in the specific heat. In the present case, the
incipient structural ordering is the formation of a particular
secondary structure (a helix) but this result is clearly more
general. At high temperatures, the chain is in a coil (swollen)
configuration, and consecutive bonds are clearly uncorrelated.
As a result, the tangent-tangent correlation function drops
to zero within few units of σ. As temperature decreases,
however, the decay becomes increasingly slower indicating
an increase in the persistence length Lp given by Eq. (6),
as clearly seen in Figure 4. This trend persists until the
Fisher-Widom temperature TFW is reached, below which an
oscillatory behavior superimposed to the decay is visible, and
becomes more and more pronounced as we cross the critical
temperature Tc. In the framework of a mean-field theory for a
polymer with finite thickness, a similar behavior was observed
and ascribed to the disappearing of a real eigenvalue of the
corresponding transfer matrix.37 When the system is in a well
characterized helical state, bond vectors display oscillatory
behaviour due to the helical path followed by unit vector T
along the chain, as explained in the Appendix. Unlike the
case of an ideal helix illustrated in the Appendix, a damping
can be observed in the oscillation, so that the helix backbone
becomes stiffer and stiffer as we cool down, and the peaks of
the oscillation have amplitudes that become more persistent.
By fitting these peaks we can still obtain a value of the
persistence length Lp. However, care must be exercised in
the interpretation of this result as this should be considered
as the “helix persistence length” rather than the persistence

FIG. 5. (Left) Plot of the persistence
length Lp as a function of T /Tc.
(Right) Specific heat per monomer
CV (T )/(NkB) for N = 20 and 40.
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length of a chain. In the present study, we will neglect this
nuance and use the same definition in both cases. Figure 5
displays the persistence length as a function of the reduced
temperature kBT/ϵ for a given b/σ = 0.65 and at two different
number of beads in the chain (N = 20 and N = 40). In both
cases, Lp/σ ≈ 1 until a sudden uprise is observed around
kBT/ϵ ≈ 0.7 indicating a progressive increase of the effective
stiffness of the polymer chain. Size effect is visible as the
persistence length at a given temperature is larger for N = 40
than N = 20.

VI. AN ALTERNATIVE MODEL:
ENERGETIC STIFFNESS

In this section we would like to address the issue of
the connection between the OPSC model and another model
where stiffness is enforced in a rather different way.

We have already discussed the WLC model that is
controlled by a bending potential of the form

UWLC =
K
2


j

κ2
j, (18)

where K = LPkBT is the elastic modulus of the bending
rigidity (i.e., the stiffness) of the chain, and where we have
introduced

κ2
j =

�
τj+1 − τj

�2
= 2b2

(
1 − T j+1 · T j

)
(19)

that determines the local curvature of the chain at the jth
monomer position. Note that κ j is the discrete analog of
the curvature κ(s) appearing in the Frenet-Serret equations
Eq. (4).

In the geometry of chain displayed in Figure 1 (left), this
is proportional to 1 − cos θ with θ ≤ 120◦, so that the stiffness
is enforced through the bending rigidity introduced through
an energetic term (that depends upon temperature), and not
through a geometrical constraint.

An alternative way, used in Refs. 11 and 12, is in the form
of a on-off potential

Uθ0 =

j

u j (θ0) , (20)

where

u j (θ0) =



+∞, T j+1 · T j < cos θ0

0, otherwise
. (21)

Figure 6 contrasts this potential with the conventional WLC
model, in terms of the θ dependence. Essentially, small local
directional fluctuations of the chain, within an angle θ0, are
allowed with no energy penalty, but larger ones are prevented.
So, depending upon the actual value of the angle θ0, the chain
may vary from very flexible (when θ0 is large) to very stiff
(when θ0 is small). We will refer to this as Uθ0 model and
note that here b/σ = 1. Even in the present Uθ0 model, side
chains at the same position in space as in the OPSC model are
added to make the comparison one-to-one. Conversely, side
chains can be removed both in OPSC model and in the present
one, to test for their possible influence on the local stiffness.
Following the convention set out in our previous work,16 the

FIG. 6. Comparison between the θ dependence in the WLC model and in the
Uθ0 model.

OPSC in the limit of vanishing side chains will be denoted as
overlapping polymer (OP) model.

At intermediate temperatures, when the chain is in the coil
conformation but stiffness is still significant, the Uθ0 model
with side chains provides an increasing persistence length
Lp as a function of θ0 akin to the dependence of the OPSC
model for b/σ < 1. This is shown in Figure 7. Calculations
on the Uθ0 model were performed at different values of the
critical bending angle θ0 using replica exchange starting from
high temperature phase, where the chain is in a stiff coil
conformation. The range of attraction was set to Rc = 7 Å
as in the OPSC case, and 16 different temperatures between
kBT/ϵ = 1.0 and kBT/ϵ = 0.1 were used.

Here N = 20 has been used, and T > Tc in all cases. The
tangent-tangent correlations and the corresponding persistence
length Lp for the Uθ0 model (with or without side chains)
have been computed following the same steps as in the OPSC
model, for decreasing values of θ0 corresponding to increasing
effective stiffness as given by Eq. (21). These values were
then translated in terms of b/σ using Eq. (7) and compared
with results derived from OPSC model. No fundamental bias
originating from the use of different methodology is expected
in this comparison.16

Figure 7 displays the resulting Lp/b as a function of
1 − b/σ for both the OPSC and the Uθ0 model with side chains.
Both models qualitatively agree in predicting an increase of
the effective bending rigidity, with a remarkable agreement
event in quantitative terms. The lines represent a fit in the

FIG. 7. Comparison of the persistence length dependence Lp/σ as a func-
tion of 1−b/σ for the OP (solid line), OPSC (dashed line), the Uθ0 (×), and
the Uθ0 model with side-chains (�). The mapping between the two models
has been obtained via Eq. (7) (see Figure 1).
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FIG. 8. (Left) Ground states obtained with entropic and energetic stiffness, corresponding to the OPSC and the Uθ0 with side chains models, respectively.
Bending rigidity increases from top (θ0= 108◦, b/σ ≈ 0.85) to bottom (θ0= 80◦, b/σ ≈ 0.65). (Right) Same in the case of the OP and Uθ0 models. Here
bending rigidity increases from θ0= 60◦, b/σ ≈ 0.58 top, to θ0= 30◦, b/σ ≈ 0.52 bottom.

form Lp/b = c1 + c2 tan(π(1 − b/σ)), with c1 and c2 fitting
constants.

It is worth stressing that the correct length scale for Lp is
b and not σ, as Lp is measured along the chain. This makes
no difference in the Uθ0 model, as both quantities coincide,
but it does in the OPSC model where b/σ < 1.

Figure 7 also shows the same calculation without the side
chains in both models. Although there is a slight quantitative
difference with the case of side chains, with this latter being
effectively stiffer, the agreement between the two models
persists even in this limit.

While the intermediate temperatures behavior of the
OPSC and the Uθ0 model with side chains are then
essentially equivalent in terms of persistence length, their
low-temperatures phases are rather different, as illustrated by
the comparison provided in Figure 8 (left panel).

For low bending rigidity, corresponding to large θ0,
one observes globular phases in the Uθ0 model with side
chains, with no sign of secondary structures formation,
contrary to beta-sheet obtained in the OPSC model. Upon
increasing stiffness (i.e., decreasing θ0), one observes a
helical phase in the OPSC model and a hybrid shape
in the Uθ0 model with side chains. Here we have used
θ0 = 108◦, corresponding to b/σ ≈ 0.85, and θ0 = 80◦,

FIG. 9. Tangent-tangent correlation function Fc(ξ) of an ideal helix as a
function of ξ for two different values, c = 10.4, corresponding to 4π2/c2

≈ 0.39 < 1, and c = 5.0, corresponding to 4π2/c2≈ 1.58 > 1.

corresponding to b/σ ≈ 0.65, in the more and less flexible
cases, respectively.

It is interesting to contrast these findings with the
corresponding ones obtained in the absence of side chains.
This is depicted in Figure 8 (right panel). Here, we have
increased the stiffness significantly to compensate for the
absence of side chains, thus using θ0 = 60◦ (i.e., b/σ ≈ 0.58)
in the more flexible case, and θ0 = 30◦ (b/σ ≈ 0.52) in
the stiffer case. Here the comparison between the OP and
the Uθ0 model, which gives essentially undistinguishable
globular phases in the more flexible case (b/σ ≈ 0.58),
is striking in the stiffer (b/σ ≈ 0.52) case. In the Uθ0
model, a toroidal phase is observed, clearly distinct from
a helical phase. This agrees with previous findings within
the DNA condensation framework.11,12 By contrast, no such
toroidal phase is observed in the OP model with the same
stiffness.

VII. CONCLUSIONS

In this paper, we have addressed the problem of the
effective stiffness originating in the OPSC model introduced in
a recent study,16 as a function of partial overlap of consecutive
beads. The latter represent either monomers, in the polymer
language, or amino-acids in protein domain.

As overlap increases from no-overlap (b/σ = 1) to the
maximum overlap limit (b/σ = 1/2), the local curvature of
the chain is affected and we have discussed how and why this
can be reckoned as an increasing entropic bending rigidity that
competes with the short-range attraction to give different low-
temperature phases. In the flexible limit (b/σ = 1) we find a
coil-globule transition as expected from conventional synthetic
polymers. As this ratio decreases down to b/σ = 0.85 (and
hence stiffness increases), we find a clear signature of a
planar-like low temperature phase, reminiscent of the β−
sheet secondary structure in globular proteins. Upon further
decrease down to b/σ = 0.65, an equally clear signature of a
coil-helix transition is found at low temperatures. We argued
that the physical origin of this distinction between these two
phases can be traced back to the combined effect of increased
entropic stiffness of the local curvature and a change in the
excluded volume.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  42.115.177.17 On: Wed, 24 Aug

2016 05:31:21



084904-9 Škrbić, Hoang, and Giacometti J. Chem. Phys. 145, 084904 (2016)

While helical phases were found in past models involving
overlapping of consecutive monomers, the present work is
the first, to the best of our knowledge, to show that a certain
degree of overlap combined with the effect provided by the
side chains can lead to a beta-sheet phase.

We have then compared the above findings with those
originating from the Uθ0 model with side chains, where the
effective bending rigidity has an energetic origin. Here the
crucial difference from the OPSC model stems from the fact
that there is no interpenetration between consecutive beads,
but an explicit infinitely large energy penalty is given for
bending of consecutive bonds above a given angle θ0, with
no penalty below it. With decreasing θ0, stiffness increases
and we find an exact geometrical mapping connecting the
Uθ0 model with side chains with the OPSC model. In full
agreement with this mapping, we find that the dependence
of the persistence length of the two models in terms of the
stiffness to be identical at intermediate temperatures, where
the chain is in the coil but with stiff conformation.

Conversely, at low temperatures, we find the Uθ0 model
with side chains to display only globular and hybrid phases
for the same values of stiffness. For higher bending rigidity
and in the absence of side chains, the Uθ0 model displays
toroidal phases as it was found in Refs. 11 and 12. This means
that explicit energetic bending rigidity is not compatible
with secondary structures typically found in proteins, even in
the presence of side chains. This notwithstanding, it is still
noteworthy that the Uθ0 model with side chains and the OPSC
share the same phenomenology at intermediate temperatures
in terms of an effective stiff coil conformation, and that this is
true whether or not side chains are present.

Interestingly, the OPSC model shares strong similarities
with the tube model, introduced by Maritan et al. in Ref. 14
and further reviewed in Refs. 38 and 39. In that case, the
combined role of entropic bending rigidity and steric effect of
the side chains is played by the thickness of the tube. Indeed,
this model was shown to display both beta-like and helical
phases upon optimal packing requirement and increasing the
range of short-range attractive interactions,15 in agreement
with what presented here. The results presented in this paper
open up a number of perspectives that we plan to investigate
in a future work. A finite-size dependence study, in terms of
increasing the length N and of decreasing the side chain beads
size σs, is clearly desirable. A clear-cut comparison with the
tube model in terms of similarities and differences would
also be useful.40 Another interesting point would be to add a
short-range interaction between the side-chain beads, which
was suggested to mimic the effect of hydrogen bonding.41

More generally, it would be interesting to pursue the effect of
additional ingredients to the OPSC model discussed here, in
the strive towards a more realistic description of protein-like
systems.
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APPENDIX: TANGENT-TANGENT CORRELATION
IN AN IDEAL HELIX

Consider a helix as parametrized by an angular coordinate
0 ≤ ξ ≤ 2πnp, where np is the number of different turns
(i.e., pitches). In Cartesian coordinates, its representation with
respect to an origin (defined at the origin of the helix) is
identified by the vector

r (ξ) = R cos (ξ)ex + R sin (ξ)ey + P
ξ

2π
ez. (A1)

Here R and P are the radius and the pitch of the helix,
respectively. Then we have

∂

∂ξ
r (ξ) = −R sin (ξ)ex + R cos (ξ)ey +

P
2π

ez. (A2)

On recalling that the tangent unit vector has the form

T (s) = ∂

∂s
r (s) (A3)

where

∂

∂s
r (s) = 1

s′ (ξ)
∂

∂ξ
r (ξ) (A4)

we then have that the condition

T (s) · T (s) = ∂

∂s
r (s) · ∂

∂s
r (s) = 1 (A5)

leads to

s′
2 (ξ) = R2 +

P2

4π2 (A6)

that turns out independent of ξ. This expression can then be
integrated to get the total length of the string (the backbone of
the helix)

L =
 2πnp

0
dξ


R2 +

P2

4π2 = np


P2 + (2πR)2. (A7)

Note that this is, in general, different from the “Euclidean
length” Λ = npP that corresponds to the length of the
associated spherocylinder.

From Eqs. (A1)-(A4) we can then compute the tangent-
tangent correlation along the helix,

T (s) · T (0) = Fc (ξ) , (A8)

where

Fc (ξ) =
1 + 4π2

c2 cos ξ

1 + 4π2

c2

, (A9)

whose behavior as a function of 0 ≤ ξ ≤ 2π is reported in
Figure 9 and it is clearly oscillating. Interestingly, Fc(ξ)
depends on the combination c = P/R and not upon the pitch
P and the radius R separately. Figure 9 reports the case where
4π2/c2 ≈ 0.39 < 1 and hence the oscillation amplitudes are
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always positive, and the case 4π2/c2 ≈ 1.58 > 1 where they
can get negative.

Note that the period of the oscillation is identical in the
two cases, as it depends only upon the pitch P (=5 in the
present case), whereas the amplitude of the oscillation

∆Fc ≡ F (2π) − Fc (0) = 2
1

1 + c2

4π2

(A10)

can be used to measure c and hence the radius R.
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