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Abstract. Relations between the first, the second quantized representations and deform
algebra are investigated. In the case of harmonic oscillator, the axiom of first quantization
(the commutation relation between coordinate and momentum operators) and the axiom of
second quantization (the commutation relation between creation and annihilation operators)
are equivalent. We shown that in the case of q-deformed harmonic oscillator, a violence of the
axiom of second quantization leads to a violence of the axiom of first quantization, and inverse.
Using the coordinate representation, we study fine structures of the vacuum state wave function
depend in the deformation parameter q. A comparison with fine structures of Cooper pair of
superconductivity in the coordinate representation is also performed.

1. Introduction
In the last decade, studies of quantum algebras (or groups) have a great attention in modern
physics and mathematics. They motivated by the passage from classical physical systems
to quantum systems. Despite concept of algebras was suggested long before the discovery
of quantum mechanics in the beginning of the last century, and an important achievement
was mad by Heisenberg, the Heisenberg deformed algebra still rare applications in comparison
with wave representation (Schrodinger wave equation, or the first quantization), and particle
representation (occupation numbers approach, or second quantization) of quantum mechanics.
Recently, quantum group and deformed Heisenberg algebras with q-deformed harmonic oscillator
have been a subject of intensive investigation. This approach is found some applications in
various branches of physics and chemistry [1–7]. The method of q-deformed quantum mechanics
was developed on the base of Heisenberg commutation relation (the Heisenberg algebra). The
main parameter of this method is the deformation parameter q usually considered to variety in
the range 0 < q < 1, and the models have been constructed that the behavior of studying objects
reduce to theirs standard counterparts as q → 1. In this work we investigate relations between
the first, the second quantized representations of quantum mechanics and deform algebra.
In the case of harmonic oscillator, the axiom of first quantization (the commutation relation
between coordinate and momentum operators) and the axiom of second quantization (the
commutation relation between creation and annihilation operators) are equivalent, so harmonic
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oscillator is a good object for investigation the link between the two representations of quantum
mechanics. We shown that in the case of q-deformed harmonic oscillator, a violence of the
axiom of second quantization leads to a violence of the axiom of first quantization, and inverse.
Using the coordinate representation, we study fine structures of the vacuum state wave function
depend on the deformation parameter q. A comparison with fine structures of Cooper pair of
superconductivity in the coordinate representation also is performed. In this work we use the
atomic unit system with h̄ = c = kB = 1.

2. Relation between the first and the second quantized representations of
quantum mechanics
One of most important behaviors of nature is the wave-particle dualism. In the first quanti-
zation, classical particles turned to some waves (or fields in general). Example electrons can
be expressed by wave function Ψe (r,t) , satisfied the wave equation Schrodinger. The regular
habitants in first quantization are plane waves. Vacuum of the first quantization (the home
land of wave habitants) is four-dimension flat Hilbert space. which is denoted by the ket-bra
|0〉 = (r, t). The axioms of the first quantization are the commutation relations between coordi-
nate and momentum [x̂, p̂] = −i. In the second quantization, waves (or fields) become particle
(quasi-particles in general). Example light wave become photon. The regular habitants in sec-
ond quantization are particles (quasi-particles). Vacuum of the second quantization (the home
land of particle habitants) is the Fock space (or occupation number space), which is denoted
by the round-bras |0). The axioms of the second quantization are the commutation relations
between annihilation and creation operators (commutation for bosons and anti-Commutation
for fermions). Relations between the first and the second quantized representations of quantum
mechanics are expressed in the table 1.
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Name First quantization Second quantization Connection
Vacuum Hilbert space |0〉 Fock space |0)
Habitant Wave Particle Fourier transform

Main variable Coordinate x
Momentum p

Level number N

Axiom Commutation relations
of coordinate and

momentum [x̂, p̂] = i

Relations for
annihilation and

creation operators
Commutation

(boson)[a, a+] = 1
Anti-Commutation

(fermions) {b, b+} = 1
Evolution
variable

Time t Temperature T Conjugate

Physical
constant

Planck constant h̄ Boltzmann constant kB

Main
uncertainty or

chaos

Uncertainty principle
4x4p = h̄, 4t4E = h̄

Zero-level (vacuum)
fluctuation Zero

temperature fluctuation
Main state Steady Equilibrium
Behavior Spreading Rotation (spin)

Distribution&
Statistics

Uniform (free) Wave
packet (bound)

Fermi-Dirac (fermion)
Bose-Einstein (boson)

System main
principle

Minimal energy Maximal entropy

Main
presentation

Schrodinger equation Hamiltonian operator Harmonic oscillator

Table 1. Relations between the first and the second quantized representations of quantum
mechanics.

Note here harmonic oscillator is a good bridge between the first and the second quantized
representations of quantum mechanics.

3. Harmonic oscillator (q = 1)
For simplicity we put the mass of oscillator is m = 1, and take the case of one dimensional
harmonic oscillator. In the first quantization representation the Hamiltonian of harmonic
oscillator is

H0 =
ω

2

(
p̂2 + x̂2

)
, (1)

where ω is the oscillation frequency, x̂ and p̂ = −i d
dx

are the coordinate and momentum

operators, which satisfied the commutative relation [x̂, p̂] = x̂p̂ − p̂x̂ = i. In the second
quantization representation the Hamiltonian operator of harmonic oscillator is

H0 =
ω

2

(
a0a

+
0 + a+0 a0

)
, (2)

where a+0 , a0 are creation and annihilation operators, which satisfied the commutation relation[
a0, a

+
0

]
= a0a

+
0 − a

+
0 a0 = 1. Energy spectrum of harmonic oscillator has the form

E0n =
ω

2
(2n+ 1) , (3)
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where n = 0, 1, 2, 3, . . . are the integers. The creation and annihilation operators of harmonic
oscillator can be expressed in terms of coordinate and momentum operators as

a0 =
(x̂+ ip̂x)√

2
, (4)

a+0 =
(x̂− ip̂x)√

2
. (5)

From the definition of the annihilation operator a0|0), the ground state wave function of harmonic
oscillator Ψ0 satisfies the equation

a0|0) = 0 =

[
(x̂+ ip̂x)√

2

]
Ψ0 =

1√
2

(x̂+
d

dx
)Ψ0. (6)

The solution of this equation gives us the ground state wave function of harmonic oscillator Ψ0

in a Gaussian form

Ψ0(x) = Ce−
x2

2 , (7)

where C is the normalization constant. The ground state wave function of harmonic oscillator
CΨ0 with is plotted in the figure 1.
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Figure 1. The ground state wave function of harmonic oscillator Ψ0 has a Gaussian form.

Easily to check that (
0|a+0 a0|0

)
= 0, (8)

and

〈0|a+0 a0|0〉 = 〈0|Ψ+
0 Ψ0|0〉 = 〈0|C2e−x

2 |0〉 = C2

∞∫
−∞

dxe−x
2

= C2Π
1
2 6= 0, (9)

therefore, but 〈0|a+a|0〉 6= 0 so |0) 6= |0〉. We note here the vacuums of the first and the second
quantized representations of quantum mechanics are not the same. Introducing density operator
ρ0 = Ψ+

0 Ψ0 and consider that the density fluctuation of vacuum in first quantization (Hilbert

space) is corresponding the zero level oscillation
(
n = 1

2

)
of harmonic oscillator in the second

quantization Fock space (see Casimir effect)

〈0|ρ0|0〉 =
1

2
, (10)

from that we can calculate the value of constant C

C =
(
2

1
2 Π

1
4

)−1
. (11)
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4. q-deformed harmonic oscillator
Creation and annihilation operators of q-deformed harmonic oscillator satisfied the commutation
relation [

a, a+
]
q = aa+ − qa+a = 1, (12)

where q is deformation parameter taking values in [0, 1]. Introducing the new deformation
parameter α taking values in [0,∞]

α =

√
− ln q

2
. (13)

In the second quantized representation, the Hamiltonian operator of q-deformed harmonic
oscillator is

H =
ω

2

(
aa+ + a+a

)
. (14)

Energy spectrum of q-deformed harmonic oscillator has the form

En =
ω

2
([n] + [n+ 1]) , (15)

where [n] = 1−qn
1−q are the d-integer, they differ from natural numbers. The values of ratio [n]

n
depend on deformation parameter q are presented in the figure 2.

 

Figure 2. The values of ratio [n]
n depend on deformation parameter q.

This ratio tends to zero [n]
n → 0 when q → 0. The maximum value of [n]max →∞ when q → 1

and we return to case of standard harmonic oscillator. The creation and annihilation operators of
q-deformed harmonic oscillator can be expressed in terms of coordinate and momentum operators
as

a =
exp (−2iαx)− exp

(
iα d

dx

)
exp (−iαx)

−i
√

1− exp (−2α2)
, (16)

a+ =
exp (2iαx)− exp (iαx) exp

(
iα d

dx

)
i
√

1− exp (−2α2)
. (17)

Denote ε = 1− q, the energy spectrum of q-deformed harmonic oscillator becomes quadratic

En = ω

(
n+

1

2
− n2

2
ε+O

(
ε2
))

. (18)
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As above, the solution of the equation a|0) = 0

a|0) =
exp (−2iαx)− exp

(
iα d

dx

)
exp (−iαx)

i
√

1− exp (−2α2)
, (19)

gives us the ground state wave function Ψ0 of q-deformed harmonic oscillator in the form

Ψ0 (x) = C exp

(
−x

2

2
+

3

2
iαx

)
, (20)

In the case of q → 1, α→ 0 we return to case of standard harmonic oscillator. Introduce density
operator ρ = Ψ+

0 Ψ0 of q-deformed harmonic oscillator, because Ψ+
0 Ψ0 = ψ+

0 ψ0 therefore ρ = ρ0,
so that 〈0|ρ|0〉 = 〈0|ρ0|0〉 = 1

2 . Values of density vacuum fluctuations are the same for both
harmonic oscillator and q-deformed harmonic oscillator. Real part ReΨ0 and imaginary part Im
Ψ0 of ground state wave function Ψ0 are presented in figure 3.

 

Figure 3. Real part ReΨ0 and imaginary part ImΨ0 of ground state wave function Ψ0 are
presented in figure 3.

At q = 1, back to harmonic oscillator case with ReΨ0 has a Gaussian form, and ImΨ0 = 0.

5. Comparison with Cooper pairs in superconductivity
From condensed matter physics we have learn that the real part of wave function plays important
role. In this part we try to explore the meaning of real part ReΨ0 of ground state wave function
Ψ0 of q-deformed harmonic oscillator. For comparison we take the well known case of Cooper
pairs in superconductivity. In a long history of the BCS theory, the Cooper pair usually analyzed
in the momentum-space. The first investigation Cooper pair in coordinate-space was done in
the work [8], where was shown that this leads to a spherically symmetrical quasi-atomic wave
function, with an identical onion-like layered structure for each of the electrons constituting the
Cooper pair. The internal structure of Cooper pair wave function ΨC (also called the singlet
pair function or the Gorkov function) is given by

Ψ(r) ∝
∫
cos (kF r + e′r′) dε′√

ε′2 + 1
≈ cos (kF r)

∫
cos (ε′r′) dε′√

ε′2 + 1
= cos (kF r)K0

(
r

πξ0

)
, (21)
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where kF is the Fermi wave vector at the top of the Fermi sea, K0 is the zero-order modified
Bessel function with an asymptotic form that is similar to an exponential for large x. The wave
function ΨC of Cooper pair is plotted in the figure 4.
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Figure 4. The wave function ΨC of Cooper pairs in superconductivity.

We can realize that the real part ReΨ0 of ground state wave function Ψ0 of q-deformed harmonic
oscillator (see figure 5) is very similar the wave function ΨC of Cooper pair.
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Figure 5. The real part ReΨ0 of ground state wave function Ψ0 of q-deformed harmonic
oscillator α = 10.

The similarity between ReΨ0 of q-deformed harmonic oscillator and the wave function ΨC of
Cooper pair might be not accidental and will be a subject for further investigation.

6. Uncertainty relation for q-deformed harmonic oscillator
The coordinate-momentum uncertainty relation is an important character of quantum world.
This uncertainty for q-deformed harmonic oscillator is

4x4p =
E

ω
=

([n] + [n+ 1])

2
.
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For the case of harmonic oscillator (4x4p)0 = (2n+1)
2 . The ratio of K = 4x4p

(4x4p)0
of uncertainty

for q-deformed harmonic oscillator and uncertainty for harmonic oscillator is plotted in the figure
6.

 

Figure 6. The ratio of K = 4x4p
(4x4p)0

of uncertainty for q-deformed harmonic oscillator and

uncertainty for harmonic oscillator.

We note here uncertainty for q-deformed harmonic oscillator is less than the analogous value
for standard harmonic oscillator for all n, except n = 0. At n = 0, the coordinate-momentum
uncertainty is minimum and given by 1/2.

7. Discussion
The main results of this work are the table1 showing the relations between the first and
the second quantized representations of quantum mechanics with an attention that harmonic
oscillator is a good bridge between them, also the investigation deformation parameter q
depending on the most important physical characters of q-deformed harmonic oscillator in
explicit coordinate representations, such as annihilation and creation operators, q-deformed
integer, the ground wave function, coordinate-momentum uncertainty relation. Introducing
density operators, we explored the physical meaning of wave function of ground state of the
two types oscillators with and absence deformation, and shown that the vacuums of first and
second quantization are not the same but the values of vacuum density fluctuation or zero level
oscillation are equal for both. We shown that the real part ReΨ0 of ground state wave function
Ψ0 of q-deformed harmonic oscillator is very similar the wave function ΨC of Cooper pair in
superconductivity. This similarity might be not accidental and will be a subject for further
investigation. We noted that uncertainty for q-deformed harmonic oscillator is less than the
analogous value for standard harmonic oscillator for all n, except n = 0, which in contrast to
standard quantum mechanics that uncertainty of harmonic oscillator is minimal value. The
physical meaning of this also will be a subject for further investigation.
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