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Abstract
Bymeans of atomistic calculations, we investigate the effects of uniaxial strain on the electronic
bandstructure of a twisted graphene bilayer (T-GBL).We find that the bandstructure is dramatically
deformed and the degeneracy of the bands around theDirac points is broken by strain. As a
consequence, the number of valleys in the bandstructure can double and the vanHove singularity
(VHS) points are separated in energy. The dependence of these effects on themagnitude of strain, its
applied direction and the twist angle is carefully examined and clarified. As an important result, we
demonstrate that the position of VHSs can bemodulated by strain, suggesting the possibility of
observing this peculiar feature of the bandstructure at low energy in a large range of twist angles (i.e.,
larger than 10°). These phenomena could not be detectedwithin the continuum approximation used
in previousworks.While they are in good agreementwith available experimental data, our results
provide a detailed understanding of the strain effects on the electronic properties of T-GBLs andmay
motivate further investigations of electronic transport in this type of graphene lattice.

Nowadays, graphene is one of the most attractive
materials for beyond-CMOS electronics because of its
specific electronic properties, which are a consequence
of its two-dimensional (2D) honeycomb lattice and
massless low-energy excitations, as summarized, e.g.,
in the review [1]. It is the basis of several peculiar
phenomena and promising applications of graphene-
based nanostructures [2]. Additionally, the electronic
structure of graphene is relatively easy to modulate,
e.g., by strain [3] or substrate [4] engineering, or by
applying a perpendicular electric field [5], etc. The
formation of Van der Waals heterostructures [6] has
also been suggested as an effective route to control the
electronic structure of graphene. Multilayer graphene,
formed of graphene layers only, is one of these van der
Waals structures. Tomodulate its electronic structure,
one can rotate one graphene layer with respect to the
other ones (i.e., twisted few-layer graphene) to form
graphene-on-graphene moiré patterns. The twisted
few-layer graphene lattices often appear in the thermal
decomposition of the C-face of SiC or in the copper-
assisted growth using the chemical vapor deposition
method, e.g., see [7–19]. Indeed, the bandstructure in

a twisted graphene bilayer (T-GBL) changes dramati-
cally [13–19], compared to that of monolayer or
Bernal/AA stacking bilayer systems. In addition to the
linear dispersion in the vicinity of K-points, saddle
points emerge at the crossing ofDirac cones (i.e., at the
M-point in the Brillouin zone), yielding van Hove
singularities (VHS) in the density of states (DOS) at
low energies and remarkable renormalization of the
Fermi velocity. Moreover, magnetic, optical, and
phonon transport properties of the T-GBLs have a
strong dependence on the twist angle [20–22]. Here,
we would like to note additionally that though it has
been reported theoretically that the bandstructure of
Bernal stacking graphene bilayer exhibits separated
‘pockets’ with saddle points at low energy (i.e., a few
meV around the Dirac point) when taking into
account farther-neighbor interactions between two
layers [23], the VHSs at these points are extremely
weak and hence difficult to observe experimentally,
compared to those corresponding to the bands at the
M-point (at very high energy) [24, 25]. In this regard,
since the bands at the M-point of slightly T-GBLs are
at reasonably low energy, i.e., ≲ 0.5 eV from the Dirac
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point for a twist angle 6TLϕ < ° [17], the correspond-
ing VHS points can be easily tuned/probed in practice
and hence have attracted a great amount of attention
[13–19]. Note that the M-point in the original
Brillouin zone of monolayer or Bernal/AA stacking
bilayer systems and the Brillouin zone of T-GBLs is
determined similarly, i.e., as themiddle point between
theK and K′ (i.e., Dirac) points [20].

In addition to its fascinating electronic properties,
graphene also has remarkable mechanical properties.
Indeed, it is able to sustain a much larger strain (i.e.,

20%> [26]) than any other semiconductor, making it
a promising candidate for flexible electronics. Very
recently, some techniques to generate extreme strain
in graphene in a controlled and nondestructive way
have been also explored [27, 28], so that strain engi-
neering should become a promising approach tomod-
ulating the electronic properties of graphene
nanomaterials. Many interesting electrical, optical and
magnetic properties induced by strain have been actu-
ally observed [3, 29–39]. Although the bandgap of
slightly strained (a few per cent) 2D graphene remains
zero [40], the strain can be used to generate or strongly
modulate transport gaps in some specific graphene
channels, e.g., graphene nanoribbons with a local
strain [30, 32], graphene with grain boundaries [31],
graphene strain junctions [33, 34], and vertical devices
made of twisted graphene layers [35].

The strain effects on the low-energy bands includ-
ing the VHS points of Bernal stacking graphene bilayer
have been widely studied as, e.g., in [41]. The band-
structure of T-GBLs has been also investigated in sev-
eral works (e.g., in [13–15, 17–21, 42, 43]) using
different approaches including first principles calcula-
tions, tight binding methods and continuum approx-
imation. To the best of our knowledge, the effects of
strain on VHSs in T-GBLs have been discussed only in
[42, 43] and explained on the basis of calculations in
the continuum approximation without taking into
account the details of the atomic arrangement. This
approximation has been shown to give a good descrip-
tion of the T-GBL bandstructure at low energy and
allowed explaining the main/basic properties of VHSs

observed in experiments for the slightly T-GBL with-
out strain. However, when strain is applied, the atomic
arrangement of T-GBLs is dramatically affected and
becomes very strongly anisotropic, due to the strain-
induced changes in C–C bond lengths. This can result
in complicated deformation of graphene band-
structure, i.e., the strain effects are strongly dependent
on the direction of applied strain and on the lattice
orientation, as previously reported in [31, 34, 35, 40].
In particular, the strain effects on the electronic prop-
erties of two graphene sheets with different orienta-
tions should be, in principle, different. In a recent
study of graphene vertical devices made of two twisted
graphene layers [35], we have demonstrated that the
strain can lead not only to the displacement of Dirac
cones from the K-point but also to the separation of
Dirac cones of the two sheets. Interestingly, this fea-
ture results in a strain-induced finite conduction gap
in these vertical channels and this gap is strongly
dependent on both strain amplitude and its applied
direction. These properties should have a strong
impact on the bandstructure of T-GBLs but they have
not been fully clarified yet in the previous studies
based on the continuum approximation. This raises a
question about the detailed effects of strain on the
bandstructure of T-GBLs when employing more
accurate approaches including explicitly the arrange-
ment of C-atoms. In this context, our aim here is to
revisit this topic, i.e., the strain effects on the band-
structure of T-GBLs, using appropriate atomistic
tight-binding calculations. In general, the size of
supercells to consider for the atomistic simulation of a
T-GBL (especially, in the cases of small twist angle) is
too large for first-principles calculation, which makes
the tight-binding method the most convenient, with a
reasonable level of approximation. In this paper, we
demonstrate several interesting features that were not
clarified or even not detectable within the continuum
approach used in previous works.

We investigate twisted graphene lattices consisting
of two parallel graphene sheets, i.e., twisted T-GBL as
schematized in figure 1. Starting from the AA stacked
graphene bilayer, the rotation center was chosen at the
hexagon center and then all lattices considered here

Figure 1. Schematic of twisted graphene bilayer with the twist angle TLϕ investigated in this work. t1,2⃗ are its primitive vectors. The

right presents two zoom images showing the nearest-neighbor vectors r1,2,3⃗ (v1,2,3⃗ ) and lattice vectors a1,2⃗ (b1,2
⃗ ) of the bottom (top)

layer. A uniaxial strain of angle θwith respect to the axisOx is considered.
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were generated by rotating one sheet with respect to
the other one by a commensurate angle TLϕ . This
commensurate angle is determined by cos TLϕ =
n mn m( 2 3 3 )2 2+ + n mn m( 3 3 )2 2+ + [18], where
n and m are coprime positive integers. The primitive
vectors of the Bravais lattice are determined as follows:
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if gcd(n, 3) = 3 (gcd(p, q) is the greatest common
divisor of p and q). Here, the vectors a1,2⃗ are the
primitive vectors of the bottom sheet as schematized
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The number of atoms in a primitive cell is

N n m m n m4 ( ) ( 2 )a
2⎡⎣ ⎤⎦= + + + in the former case

and N m nm n4 3a
2 2⎡⎣ ⎤⎦= + + in the latter one. In

the Oxy coordinates chosen as in figure 1, the vectors
t1,2⃗ of the unstrained T-GBLs can be rewritten in the
following forms:
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respectively, with the in-plane bond length a0 (=
0.142 nm) in pristine graphene. Accordingly, the
reciprocal primitive vectors of T-GBLs are given by
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The size of the Brillouin zone in T-GBLs is hence re-
scaled by a factor of a L0 0, compared to the original
Brillouin zone in monolayer graphene (i.e., (n,
m) = (−1, 1) and L a0 0= ). In the strained T-GBLs, the
vectors above are all deformed due to the changes in
theC–Cbond lengths (see further discussions below).

To compute the electronic structure of these
T-GBLs, we employed atomistic tight-binding calcula-
tions as in [15, 18–20, 33, 34, 40, 44]. A uniaxial-strain
of angle θ with respect to the Ox axis is applied in the
in-plane direction (see figure 1). This strain causes
changes in the C–C bond vector rij⃗ according to
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sor

M

cos sin (1 ) sin cos

(1 ) sin cos sin cos
,

(6)

strain

2 2

2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥σ

θ γ θ γ θ θ
γ θ θ θ γ θ

=
− +

+ −

where σ represents the strain amplitude and 0.165γ ≃
is the Poisson ratio [46]. Taking into account the strain
effects, the hopping parameters were adjusted simi-
larly as in [19, 40], i.e.
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where t 2.71 = − eV, 3.371β = , t 0.482 = eV,
7.422β = , and d 0.3350 = nm. Note that due to the

lattice symmetry, the bandstructures with the applied
strains of angle θ and 60θ + ° have the same proper-
ties. Hence, our investigation is limited to

[0 , 60 ]θ ∈ ° ° . Here, we especially focus on the possi-
bility of achieving low energy saddle points. Since the
bandstructure of T-GBLs is nearly symmetrical
around the neutrality (Dirac) point in the considered
energy range [14, 20], we only present and analyze the
properties of conduction (positive-energy) bands
throughout this work.

To analyze the basic properties of the band-
structure of T-GBLs under strain, we display pictures
of the lowest energy bands of the lattice 9.43TLϕ = °
(i.e., n = 1 and m = 3) without and with strain of
( , ) (6%, 20 )σ θ = ° in figures 2(a) and (b), respec-
tively. It is well known that in unstrained graphene
monolayers, the first Brillouin zone has a hexagonal
form with six Dirac cones at their corners. Addition-
ally, these corners are divided into two sets of inequi-
valent points, i.e., K and K′. In unstrained T-GBLs,
these Dirac points of two single layers are folded back
to two Dirac points,K andK′, in the reduced Brillouin
zone [20], which is determined by the reciprocal pri-
mitive vectors in equation (5). Therefore, the Brillouin
zone of T-GBLs has the same hexagonal form as that
of single layers but their lowest band is composed of a
pair of nearly degenerate branches around their Dirac
(or K) points [20]. These two bands form two degen-
erate Dirac cones at the same k-point (i.e., at the K-
point) as illustrated in figures 2(a) and (c). Interest-
ingly, we find here that when a strain is applied, (i) this
degeneracy can be totally lifted (see figures 2(b) and
(d)) and (ii) the Dirac cones of T-GBLs are no longer
located at their K-points. The latter is a general phe-
nomenon observed for 2D graphene systems, which
has been well explained by the effects of strain on the
distance and hopping energies between C-atoms. The
former can be explained as a consequence of the differ-
ent orientations of the two graphene layers in this lat-
tice. Basically, as reported in [31, 34], the strain-
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induced deformation of the graphene bandstructure,
i.e., resulting in the displacement of Dirac cones from
theK-point, is strongly dependent on the lattice orien-
tation. The two graphene layers in the T-GBLs have
different orientations with respect to the strain direc-
tion and hence the strain effects on their band-
structure are different [35]. Though they are coupled
in the T-GBLs, this difference still manifests itself in
the separation of the degenerate bands around the
Dirac cones and hence explains essentially our results.
Here, we distinguish two groups of Dirac cones,D and
D′ (D 1 6= ÷ ), which form two similar irregular
hexagons and are just shifted from each other in the k-
space (i.e., see also figure 4 and related discussions
below). As a first important conclusion, the data pre-
sented in figure 2 demonstrate that the degeneracy of
the bands around the Dirac cones of T-GBLs is broken
and hence the number of valleys in the bandstructure
of T-GBLs can double when a strain is applied. We
suggest that this phenomenon can change

dramatically the transport picture related to the num-
ber of valleys in graphene, e.g., valley filter and valley
valve effects reported in [45]. This obtained result has
not been observed yet in the previous studies based on
the continuum approximation and the analysis of
strain effects in the extended Brillouin zones, i.e., in
the original Brillouin zones of single layers.

Next, we discuss the consequences of the phenom-
enon observed above on the properties of VHSs, i.e.,
saddle points in the bandstructure [16]. In figure 2(d),
we see that the low energy bands joining the Dirac
points D and D′ of the considered lattice are actually
crossing bands. Therefore, even if their relative shift
can occur and increase when a strain is applied, there is
no saddle point between them. However, as shown in
figure 3, saddle points occur close to the line joining
two Dirac cones of the same group. Here, we would
like to note that because of the interaction between the
two layers, the bands in T-GBLs are more complex
than that of single layers, especially under strain.

Figure 2.Map of the lowest positive-energy bands of twisted graphene bilayer without (a) andwith strain (b). The twist angle
9.43TLϕ = ° and strain of ( , ) (6%, 20 )σ θ = ° are considered here. Panels (c) and (d) show schematically the strained-induced change

in the bandstructure around theK-point.
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Actually, the saddle points occur close to but not
exactly on the line joining Dirac cones in the strained
lattices. As discussed later, this complexity also results
in difference of bandstructure properties between two
different T-GBL types corresponding to gcd(n, 3) = 1
and gcd(n, 3) = 3. More importantly, we find as dis-
played in figure 3 that besides the separation of Dirac
cones discussed above, the saddle points are also sepa-
rated in energy, which is a simple consequence of the
irregularity of hexagons connecting Dirac cones when
the strain is applied. Note that in the unstrained lat-
tices, these saddle points are identical, i.e., are found at
the same energy (see figure 3(a)). In strained lattices, it
is thus possible to achieve three different saddle points
(see figure 3(b)). The existence of these saddle points is
also confirmed by our plots of DOS in the insets of
figure 3. We additionally observe two other features.
First, compared to the unstrained case, some of the
saddle points of strained T-GBLs are formed at lower
energy while the others are formed at higher energy.
Second, because of their separation, the peaks of DOS
at these saddle points are generally smaller than that of
unstrained T-GBLs. Basically, our results agree well
with the experiments [43] and theoretical prediction
based on the continuum approximation [42], i.e., the
strain can lower the energy of saddle points. However,
the energy separation of saddle points and their above
properties have not been explored previously.

All phenomena observed above are of course
strongly dependent on the applied strain, i.e., on its
amplitude and its applied direction. Now, we would
like to discuss the properties of Dirac cones and saddle
points with respect to the strain direction θ. On the top
of figure 4, we present two diagrams showing the posi-
tion of Dirac cones (D and D′) when changing θ from

90− ° to 90°. We note again that the effects of strain
angles θ and 180θ + ° are identical. It is shown that
when changing θ, the Dirac points move around the
K-points of unstrained lattices following specific
orbits. The form of hexagons D and D′ connecting
Dirac cones can be determined from the cone position

in those orbits, according to the strain direction. Con-
sidering those orbits, we reconfirm that for the strain
angles θ and 60θ + °, the bands have the same proper-
ties, i.e., the hexagons in figures 4(a), (b) for the strain
angle θ are identical to that for the angle 60θ + ° after
a rotation of 60° and a translational displacement. In
figure 4(c), we plot the energy spacing between the
saddle and neutrality (Dirac) points

E E EvHs vHs DΔ = − as a function of θ for both cases of
tensile ( 6%σ = ) and compressive ( 6%σ = − )
strains. We find that (i) in all strain cases, there is at
least one saddle point at lower energy than that of
unstrained lattice and (ii) the saddle points have oppo-
site properties for the tensile and compressive strains.
In particular, the low energy saddle point is observed
at the lowest energy for tensile strain while it is at the
highest energy for compressive strain when

30 i60θ = ° + ° and vice versa when i60θ = °. Addi-
tionally, two degenerate saddle points are achieved
when i30θ = °.When comparing the two cases of ten-
sile and compressive strains, it is shown that the saddle
points are generally observed at higher energy in the
compressive case than that in the tensile one. This can
be explained by the fact that besides the deformation
of the bandstructure, the hopping energies increase
when the compressive strain is applied and hence the
energy scale of all the bands is higher than that in the
tensile case.

In the previous work [42], Chu et al have also
investigated the effects of strain on the properties of
saddle points of T-GBLs using the continuum approx-
imation. They concluded that the tensile strain applied
along the zigzag direction of the top layer (and com-
pressive strain along the armchair direction) can lower
the energy position of saddle point but the tensile
strain along the armchair direction (and compressive
strain along the zigzag direction) can increase it. We
would like to notice that though our calculations show
that the strain always lowers the smallest EvHsΔ , the
data in [42] are qualitatively consistent with our
results displayed in figure 4(c) for the saddle point
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Figure 3. For the same structure and strain as infigure 2, profile of the lowest conduction band joining theDirac points in the (a)
unstrained and (b) strained cases. The insets show theDOS as a function of energy illustrating the existence of vanHove singularities.
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corresponding to the plus-solid line in both strain
cases. The zigzag and armchair directions of top layer
are actually 2TLθ ϕ= ( 4.72 )≃ ° and

30 2TLθ ϕ= ° + ( 34.72 )≃ ° , respectively. However,
the full properties of saddle points are shown to be
more complex (with three separated saddle points)
thanwhatwas reported in [42].

Next, we discuss the possibilities of achieving low
energy saddle points in T-GBLs by applying strain.We
plot EvHsΔ as a function of twist angle in the
unstrained case in figure 5(a) and as a function of
strain amplitude for different twisted lattices in
figure 5(b). To seek for the lowest energy saddle
points, the strain direction 30θ = ° (resp. 0°) is con-
sidered when gcd(n, 3) = 1 (resp. 3) in figure 5(b). The
difference between these two lattice types (i.e. gcd(n,
3) = 1 and 3) will be discussed later. Note that for these

strain angles, there are only two saddle points in the
considered energy range but they can be separated in
three points for other strain directions (see
figure 4(c)). First, as displayed in figure 5(a), our cal-
culations show that for a fixed number n, EvHsΔ
decreases linearly when decreasing the twist angle (i.e.,
when increasing m), but scales differently depending
on whether n is odd or even. The former property is
actually in good agreement with experimental data
[16, 17]. The latter can be understood as a con-
sequence of the difference of lattice symmetry between
these two cases. We notice here that similar scaling
rules of E ( )vHs TLΔ ϕ are also achieved when a strain is
applied, as shown for instance in the data for n= 1 pre-
sented in figure 5(b). In the strained lattices, the saddle
points are separated in energy and EvHsΔ significantly
decreases for low-energy saddle points while it slightly

Figure 4. For the twist angle 9.43TLϕ = °, diagrams showing the strained-induced displacement of Dirac cones (D in (a) andD′ in (b),
see in the text) from theK-points of unstrained lattice (circle-plus symbols) when changing the strain direction θ from 90− ° to 90°
with the step 15Δθ = °. The diamond-red/triangle-green, lines correspond to 15θ = ° and 90θ = ° ( 90≡ − °), respectively. (c) shows
the energy spacing between vanHove singularity EvHs and neutrality ED points as a function of strain direction. The dashed line
indicates the position of VHS point in the unstrain case. The strain amplitude is 6%σ = in (a), (b)while both tensile/compressive
strains are considered in (c).
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increases for high-energy points when increasing the
strain amplitude (see figure 5(b)). Interestingly, we
find that for a given number n, the larger the twist
angle (i.e., smaller m), the stronger the reduction of

EvHsΔ when increasing the strain. We suggest that this
is a consequence of the folding of the bandstructure
from the original bands of single layers, i.e., the band
folding can weaken the effects of bandstructure defor-
mation in slightly twisted lattices with large unit cell.
More important, our results demonstrate the possibi-
lity of tuning the position of saddle points by strain
[43] and of achieving low energy saddle points for a
large range of TLϕ , at the expense, of course, of lower
peaks of DOS, as discussed above. We would like to
emphasize again that though the strain can always
lower the smallest EvHsΔ , this effect is strongly depen-
dent on the strain direction, as shown in figure 4(c).

Additionally, this work also suggests that multi (>1)
low-energy saddle points can be obtained for moder-
ate TLϕ and strain amplitude.

Now, we would like to clarify the specific proper-
ties of the T-GBLs with gcd(n, 3) = 3 detected from
our calculations, which are different from the case of
gcd(n, 3) = 1. The detailed description of the two lat-
tice types and their difference can be found in [18]. In
figure 6, we present the cartography of the lowest
energy bands (left) and the bands joining Dirac points
(right) for the case of n = 3 and m = 7, i.e.,

11.64TLϕ = ° in figure 5. Besides the phenomena dis-
cussed above, our calculations also show that the
bandstructure of T-GBLs with gcd(n, 3) = 3 has dra-
matically different properties, compared to the cases
of gcd(n, 3) = 1. In particular, instead of the presence
of a saddle point as in the case of gcd(n, 3) = 1, a

Figure 5.Energy spacing between vanHove singularity and neutrality points as a function of (a) twist angle in the unstrained case and
(b) strain amplitude for different TLϕ . The numbers in brackets indicate the (n,m)-pair that fully defines the lattice (see text). The
strain direction is 30θ = ° (resp. 0°) when gcd(n, 3) = 1 (resp. 3). The solid and dashed lines in (b) correspond to thefirst and second
saddle points, respectively.

Figure 6.Map of the lowest positive-energy bands (left) and bands joiningDirac points (right) in the lattice of twist angle
11.64TLϕ = °, i.e., with (n,m) = (3, 7). The applied strain is ( , ) (3%, 15 )σ θ = ° .
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crossing of bands is observed close to the line between
Dirac points of types 1 and 2. The saddle points how-
ever occur close to the lines joining the Dirac points
1–3, 3–5 and 5–1. In addition, the θ-dependence of

EvHsΔ in the two lattice types are also opposite, i.e., a
tensile strain in the case of gcd(n, 3) = 3 (not shown)
has similar effects as the compressive one for gcd(n,
3) = 1 shown in figure 4(c) and vice versa. We suggest
that these differences are a direct consequence of the
difference in lattice symmetries. Because of this differ-
ence, the interaction between two layers have different
effects on the bandstructure when they are coupled in
T-GBLs. In spite of these differences, the behavior of
the VHS energy EvHsΔ when increasing the strain is
very similar in both lattice types, as observed in
figure 5. The same feature for transport gap in the ver-
tical devices made of two twisted graphene layers has
been also observed [35].

Finally, we further investigate the bandstructure
when a large strain is applied. We find, as illustrated in
figure 7 for the lattice of twist angle 3.9TLϕ = °,
another interesting feature: the separation of Dirac
cones in the cases of small strain can disappear when
increasing the strain amplitude (for 8.5%σ = in this
case). By further increasing the strain amplitude, this
separation occurs again. This is actually a consequence
of the fact that while the strain tends to displace the
Dirac cones in the k-space, the size of the Brillouin
zone in T-GBLs (especially, in the case of slightly twis-
ted lattices) is much smaller than that of a single layer.
Hence, the merging of Dirac cones occurs at large
strain when their separation reaches the size of the
Brillouin zone. The value of strain for which this mer-
ging occurs is, of course, dependent on the size of the
Brillouin zone and hence on the twist angle, i.e., it
increases when increasing TLϕ . This property may
have an important impact on the physical phenomena
related to the Dirac fermions, i.e., to the properties of
Dirac cones. As an example, it should strongly

influence the transport gap in vertical devices made of
twisted graphene layers [35] since this gap is essentially
governed by the separation of Dirac cones of the two
layers in the k-space.

In conclusion, we have investigated the effects of
uniaxial strain on the bandstructure of T-GBL using
atomistic tight-binding calculations including the
detailed arrangement of C-atoms. Compared to the
previous studies based on the continuum approxima-
tion, our calculations show some new properties. In
particular, the band degeneracy around the Dirac
cones observed in unstrained lattices can be totally
broken by strain while the bandstructure is dramati-
cally deformed. It doubles the number of valleys and
induces in the energy separation of VHS points. It is
also shown that these phenomena are strongly depen-
dent on the magnitude of strain, its applied direction,
and the twist angle. Actually, the VHS points can be
efficiently modulated and hence the possibility of
observing this phenomenon at low energy is demon-
strated in a large range of twist angles (i.e., larger than
10°) when a strain is applied in the appropriate direc-
tion. Our results provide good guidelines for exploit-
ing the strain effects to modulate the electronic
phenomena related to the properties of Dirac cones
and the existence of VHSs at low energy in this type of
graphene lattice.
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