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Abstract. Effective potentials for finding the ground states and physical configurations have
essential meaning in many Coulomb problems of condensed and soft matters. The ordinary
n-Pade approximation potentials define as the ratio of Pi(r)/Pi+1(r), where Pi(r) are the
polynomials of i-th order of charge separation r, give quite good fit and agreement of calculation
results and experimental data for Coulomb problems, where screening effects are not important
or exchange photons still are massless. In this work we consider a general Pade effective potential
by included a factor of exponential form, which could give more accurate results also for above
mentioned cases. This general Pade effective potentials with analytical expressions were useful
to perform analytical calculations, estimations and to reduce the amount of computational
time for future investigations in condensed and soft matter topics. For example of soft matter
problems, we study the case of MS2 virus, the general Pade potential gives much more correct
results comparing with ordinary Pade approximation.

1. Introduction
In theoretical physics, one frequently encounters power series expansions whichs do not converge
or converge very slowly, and there are many methods for accelerating the convergence of these
sequences and the subsequent evaluation of the limit of an infinite sequence. Among them,
the Pade approximation provides a practical method for performing numerically the analytic
continuation of function. The Pade approximation is a very simple and powerful alternative to
polynomial approximations for analytic functions. It is known that the "best" approximation
of a function by a rational function of given order - under this technique, the approximant’s
power series agrees with the power series of the function it is approximating. The technique was
developed around 1890 by Henri Pade, but goes back to Georg Frobenius who introduced the
idea and investigated the features of rational approximations of power series [1].
The Pade approximation provides such a method, we define the [n,m] Pade approximant to f(z)
as the ratio of Pn(z) and Qm(z) [2]:

f [n,m](z) ≡ Pn(z)

Qm(z)
= f(z) + 0.(zn+m+1),

Pn(z) and Qn(z) are polyminals of degree n and m respectively, which has the same n+m first
derivatives as f(z) at z=0. e.g.

Pn(z) = b1 + b2z + ...+ bNz
n.
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The meaing of
Pn(z)

Qm(z)

is that we can write:

f(z) =
Pn(z)

Qm(z)
+ dn+m+1z

n+m+1 + dn+m+zz
n+m+z + ...︸ ︷︷ ︸

0(zn+m+1)

,

where the d’s and also the coefficients of z the Pade approximate are functions of the coefficients
in the Taylor series expansion.
From this point of view, the set of Pade approximants are a generalization of the Taylor series
expansion - the [n, 0] approximants.
The Pade approximant often gives better approximation of the function than truncating its Taylor
series, and it may still work where the Taylor series does not converge [15]. These techniques
and concepts are found beside the benefit that is convergence acceleration (e.g. ε- algorithm),
this method could be applicated to numerical solutions to partial differential equations (
exp(At) ≈ Q(At)−1P (At)), analytic continuation of power series (regions of convergence beyond
a disk). It also includes study of orthogonal polys on interval (Pade denominators for Markov
functions are orthogonal) and finding zeros/roots, poles/singularities (use zeros and poles of Pade
approximants to predict - e.g. QD algorithm)[3].
All these interesting features, and the particular simplicity of the Pade approximation make
it a very convenient tool for practical and physical applications. The range of applications to
physical problems is very broad [16]. The first physical applications of the Pade approximation
have been made in statistical mechanics[4]. Then there were many other application: in fluid
[5], blasius problem [6]. In this work, we give particular emphasis to condensed and soft matter.
We discuss various proofs of convergence, and show the approximation is particularly well suited
for Coulomb problems. We finally review the various achievements of the approximation in the
determination of Coulomb effective potential.
Very often, the equations describing a physical process are so complicated that the simplest
way to obtain their solution, if not the only way, is to perform a power series expansion in
some parameters. Furthermore, the physical values of the parameters may be such that this
perturbation to the problem, i.e., it cannot be used quantitatively as such. However, the
information is present in the coefficients of the perturbation series, and one may look for
mathematical techniques that would be capable of treating this information in a convergent
way. As above, we known that the Pade approximation use n+m+1 parameter, in this work, for
simle, we just consider the case of m=n+1, so there are 2n+2 parameter here. There is a study
about the modified pade approximation have been made, such as [7]. Now, we introduce a new
modifies pade approximation, the general pade include a factor of exponential form, so there
more one parameter in this extended part, it will make the convergence faster. The General
Pade approximation is very well suited for as we shall see.

2. Method
2.1. Potential in one layer on the screening effect of a nearby ground-plane
As an example of how the approximation can be used, it is of interest to study briefly what
can be considered as a commonly used Pade approximant in physics: the screening effect of a
ground-plane on a two-dimensional system.
In a two-dimensional electron system (2DES), strong Coulomb interactions between electrons
can lead to exotic phenomena such as the Wigner crystal state, the fractional quantum Hall
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Figure 1. Schematics showing the two systems considered in this paper. The transport layer is
screened by (a) a metal surface gate and (b) a second 2D system. In both cases the screening
layer is separated by a distance d from the transport layer, and the transport (1) and screening
(2) layers have independent potentials φ and charge densities ρ.

effect, and the anomalous 2D metallic state. So, the role of studying Coulomb interactions is
very important.
We now begin considering the screening effect of a nearby ground-plane on a 2D system (transport
layer) for two different conïňĄgurations. In the ïňĄrst, the ground-plane (i.e., screening layer)
is a metal surface gate (see Fig. 2(a)) and in the second, the ground-plane is another 2D system
(see Fig. 2(b)). In both cases the transport and screening layers are separated by a distance d.
If we consider some positive external test charge ρext1 added to the transport layer, this leads to
induced charge in both the transport layer ρind1 and in the screening layer ρind2. Charge in one
layer leads to a potential in the other via the interlayer Coulomb interaction[9]:

U(q) =
1

4πε
√
r2 +D2

.

First, we considered some ordinary Pade approximations, U(q)[1,2], U(q)[2,3], U(q)[3,4] and also
consider the Taylor series of (1). We see that the ordinary Pade approximation just accurate in
a small range of r (Fig.2). Beside, we also consider the Taylor series of Eq.(*), it’s the dashing
black line, it’s worse than ordinary Pade approximation.
Now, we will look for an analytical expression that can fits the wider range of r-values. Therefore,
we have approximated the full effective potential by general Pade approximant. It’s form is:
F = a0

r e
−b0r, where a0, b0 is determined after fitting the data to expression in Eq.(*), we found

a0 = 0.0774905, b0 = 15.8339.10−6.
The ordinary Pade approximant is known better than Taylor series, for this function we also use
general Pade approximant, contained a factor of exponential, formed then compared with the
cases above (Fig. 2). We see that the new Pade approximation is fitter for a larger range of r
than other ordinary Pade approximations and ofcourse’s Taylor series.

2.2. Two soft particles interaction
In another case in soft matter, we now consider consider the electrostatic interaction between
two dissimilar spherical soft spheres 1 and 2 (figure 4). We denote by dl and d2 the thicknesses of
the surface charge layers of spheres 1 and 2, respectively. Let the radius of the core of soft sphere
1 be and that for sphere 2 be a2 . We imagine that each surface layer is uniformly charged. Let
Z1 and N1 , respectively, be the valence and density of the fixed charge layer of sphere 1 and Z2
and N2 be those for sphere 2.
For the special case of two similar soft spheres carrying Z1=Z2=Z, N1= N2= N, d1= d2= d so
that ρfix1 = ρfix2 = ρfix. The interaction energy Vsp(H) between two similar soft spheres 1
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Figure 2. The potential in one layer is caused by the charge in the other layer, the blue, thick
line is of Original function; the black, dashing, thick is of General Pade approximation, red: Pade
[1,2]; green: Pade [2,3]; brown: Pade [3,4] and the black, dotted’s one is for Taylor series.

Figure 3. Interaction between two soft spheres.

and 2, separated by a ρfix, and a1= a2= a, equation (79) reduces to distance H between their
surfaces is[3,4]:

Vsp(H) =
2πaρ2fixsinh

2(κd)

εrε0κ4
ln

(
1

1− e−κ(H+2d)

)
.

With a more complicated function, the approximants give much different. The Taylor series is
worst of them (Fig. 4a), and the ordinay Pade approximants have more error than general Pade
approximant (Fig. 4b). So in this case, the General Pade is more exactly than any others.

3. Conclusion
The ordinary Pade approximation is known that better than Taylor series, this work shown that
the general Pade approximation by included a factor of exponential form give more accurate
results than the ordinary Pade approximation, it fitted with a larger range, especialy in the
complicated function. This new Pade approximation giving a simple approximant function
formed of F = a0

r e
−b0r, is useful to perform analytical calculations, estimations and to reduce

the amount of computational time for future investigations in condensed and soft matter topics.
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Figure 4. The interaction energy between two similar soft spheres, the blue, thick line is of
Origin function; the black, dashing, thick is of General Pade approximation, red: Pade [1,2];
green: Pade [2,3]; brown: Pade [3,4] and the black, dotted’s one is for Taylor series.
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