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Boltzmann–Gaussian Transition under Specific Noise
Effect

Chu Thuy Anh, Nguyen Tri Lan and Nguyen Ai Viet
Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Ha
Noi, Vietnam

E-mail: ctanh@iop.vast.ac.vn

Abstract. It is observed that a short time data set of market returns presents almost
symmetric Boltzmann distribution whereas a long time data set tends to show a Gaussian
distribution. To understand this universal phenomenon, many hypotheses which are spreading
in a wide range of interdisciplinary research were proposed. In current work, the effects of
background fluctuations on symmetric Boltzmann distribution is investigated. The numerical
calculation is performed to show that the Gaussian noise may cause the transition from initial
Boltzmann distribution to Gaussian one. The obtained results would reflect non–dynamic nature
of the transition under consideration.

1. Introduction
Market returns have received much attention and have been studied for decades[7, 8, 9, 10, 3, 5].
Empirical data has been used to illustrate some dynamic models of market[4]. Gaussian
distribution seems to be the most used approximation to describe real–valued random variables
which tend to cluster around a single mean value [1, 11]. Theoretically, Gaussian distribution
could be used to model market returns distribution when studying the market takes for long
time enough, i.e. when the returns set is big enough, not for the not–big–enough data set, or for
some assets that can not be described dynamically.
The model proposed in this paper is another view without taking into account the time role,
but the sets of background fluctuations. In the ideal case, just as perfect condition in a physical
system, there is no background fluctuation. However, for all real market data, there always are
various parameters affecting more or less on each movement of the market, such as political
situation in a country, or disaster, or information disturbance, . . . etc. These parameters could
be considered as background fluctuations which will be describe as a set of random auxiliary
variables. By including the background fluctuations into the data set, market returns tendency
distribution can be studied independently to time value.

2. Standard Distributions
Conventionally, the return obtained from the long time data set is modeled by a Gaussian
distribution, and the return from the short time data set is empirically presented by a symmetric
Boltzmann distribution. As the initial stage these standard distributions are recalled.
Consider an asset with random variables in an ideal condition, means without background
fluctuations, then probability distribution of returns reduces to exponential and Gaussian[6, 2].
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Figure 1. The left graphic presenting data set of return of Apple Inc. in time period 2000−2002
is not able to be well fitted with a Gaussian distribution, whereas the right one presenting data set
of return of the same stock in time period 2000−2012 is more fitted with a Gaussian distribution.
Longer time of data set, the graphics is more well fitted with the Gaussian one.
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Figure 2. Zero and Non–Zero Gaussian distributions with different values of variance σ

A normal distribution is written as

fG(σ, x0, x) =
1√
2πσ

e−
(x−x0)

2

2σ2 (1)

where x0 and σ are mean value and variance, respectively.
In other hand, a symmetric Boltzmann distribution is written under the form

fB(λ, x0,x) =
1

2
λe−λ|x−x0| (2)
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Figure 3. Zero and Non–Zero Boltzmann distributions with different values of parameter λ

where λ plays the role of inverse of market temperature, and x0 is central value of given
distribution.

3. The contributions of background fluctuations
In most of the cases, a random variable is not absolutely independently random. In fact, the
random variables are all affected by a set of other random variables that could be considered as
background or environmental fluctuations, which should be described by a stochastic process.
Using the same physical approach as in relativistic energy expressions, random quantities
will be changed under background fluctuations just the same way as thermal fluctuations in
thermodynamic systems, and it can be described

x2 → x2 +
∑
i

ε2i . (3)

For the sake of simplicity, the current consideration is limited in the case of i = 1. Hence, the
distribution functions would be rewritten as

f (x)→ C(ε)f
(√

x2 + ε2
)
, (4)

in which C (ε) is the normalization constant of the distribution function f
(√

x2 + ε2
)
, i.e.

C(ε)

ˆ
f
(√

x2 + ε2
)
dx = 1. (5)

It has been mentioned by Fokker–Plank function, under the influence of drag forces and random
forces, the probability density function of a particle’s velocity is described dynamically, as in
Brownian motion, as well as all in this case. This is a dynamic description, in which the
distribution tends to Gaussian one when time closes to infinity, means on this interval of time,
there are enough fluctuations to make a tends–to–Gauss transition.
A close–to–infinity time series could be seen as a collection of fluctuations which is big enough
to make a distribution to be a tends–to–Gauss one. The proposed model in this paper does
not depend on a specific dynamic, and somehow a possibility to define relaxation time between
two almost–balance–states is supplied. The proposed model can be used to describe not only
equilibrium–equilibrium process but also non–equilibrium to equilibrium process.
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Figure 4. In the present of small noise, Gaussian distribution splits itself into two–pick
distributions, and two picks get closer in the regime of large noise.
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Figure 5. The same phenomenon happens with the Boltzmann distribution in present of various
values of noise.

There are two types of symmetric distribution under consideration, zero centered distribution and
non–zero centered one. Under background fluctuation effect, the non–zero centered distribution
split into two symmetric distributions, whereas the zero centered one doesn’t split into two
distributions but degenerated and collapsed to a more stable Gaussian distribution. This
phenomenon is quite the same as the picture of particle and antiparticle in a physics system.
The zero–centered case could be treated as a physics system in an ideal condition, vacuum one.
In the present of noise, the Gaussian and Boltzmann distributions split into two–pick distribution
in the small value regime of noise, and bold single pick distribution in the large value regime of
noise.
The transition of a symmetric or quasi–symmetric distributions to Gaussian distribution is a
general phenomenon, which does not depend on a specific dynamic of noise, but depends on
distribution of fluctuation only. The parameters of background fluctuations such as mean value
and variation lead to the change of corresponding parameters of final Gaussian distribution.
However, in real data set, it is impossible to directly observe and to classify the background
fluctuations, their contributions are silently included into each element of data set. It can only
be observed the transition of the initial distribution to final one under influence of background
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Figure 6. The numerical summation over full range of Gaussian noise presents the final Gaussian
distribution which does not depend on initial distribution.

fluctuations. Mathematically, the final distribution f0 (x), which is obtained from real data set,
is the sum of all possible contributions of background fluctuations with specific statistical weight
fG(ε), i.e.

f0(x)→
ˆ

fG(ε)C (ε) f(
√

x2 + ε2)dε. (6)

Initial Boltzmann distribution affected by all possible background fluctuations then tends to
Gaussian distribution. It can be shown analytically by taking integral of probability distribution
function for all noises.
In general cases background fluctuations follow Gaussian law. Empirical data shows that
under background fluctuations, most of the distributions tend to Gaussian-liked ones before
transforming to Gaussian one. As an inverse approach, by analyzing the long time data set the
role of background fluctuations and their statistical parameters can be emerged and determined,
and the obtained results provide a quantitative insight of background fluctuations in many
phenomena of physics and interdisciplinary physics.
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The condition where it is supposed to exist the Gaussian–distribution–form fluctuation is a
kind of ideal one. In the case of econophysics assets, the data has been taken in specific time
interval, means with incomplete Gaussian distribution fluctuations. Background fluctuations
drive the initial distribution to a Levy distribution. This problem will be discussed numerically
and analytically in next papers. In the context of this paper the Levy part is cut off.

4. Conclusion
A non–dynamic approach has been proposed, taking into account the important role of
background fluctuations. Background fluctuations in an economic system play the same role as
in a physics one. Normal distribution fluctuations guide the transition process from exponential
distribution to normal distribution. The collapse process has been draw numerically and also
analytically in the paper.
Taking this result into economic view, it means no matter how many fluctuations it might have
for an economic object, if all are random fluctuation, the probability distribution always tends
to Gaussian one. If not, that mean some fluctuations are not considered yet.
For some special cases that background fluctuation does not follow Gaussian law, the probability
distribution will be rearranged differently. Theses cases will be treated in our next works.
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