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The possiblity of strain engineering to tailor the optical 
and electrical properties of graphene has been of great in-
terest to scientists. Graphene is currently one of the most 
fascinating materials, possessing notable features as well as 
much utilitity in nanodevices [1, 2]. The single-layer mate-
rial’s properties are highly sensitive to external fields, in-
duced doping and applied stress. The band gap of graphene 
was shown to be dramatically modified under mechanical 
deformation [3–5]. The ultratensible strain, up to 20% can 
be applied on graphene without losing reversible elastic 
deformation [6]. The strain dependence of the optical con-
ductivity of graphene can be exploited to design graphene-
based sensors [7].  

The Casimir interaction plays an important role in fab-
ricating and operating nano- and micro-electromechanical 
systems. This interaction derives from the electromagnetic 
fluctuations between objects. The attractive force due to 
the Casimir effect induces adhesion, stiction and friction in 
nanodevices [8, 10] and becomes significant at short di-
stances. Finding approaches to control the magnitude of 
the Casimir force is of increasingly growing interest in the 

search to reduce and avoid such unwanted problems. In 
particular, studying the dispersion force in graphene-based 
systems not only provides fundamental understanding for 
nanoscience, but also opens up novel graphene-based ap-
plications.  

There are numerous studies in the field of the Casimir 
interaction in graphene systems. Previous researchers have 
shown the possibility of obtaining the repulsive Casimir 
force when graphene systems are immersed in bromoben-
zene [8] or graphene interacts with metamterials [9]. Other 
papers show the possibility of changing the Casimir effect 
by means of applying an electric field to doped unstrained 
graphene sheet [10–12].  

In this Letter, we have calculated, for the first time, the 
Casimir energy in strained graphene systems with different 
directions of stretching. Our calculations were carried out 
using the Lifshitz formula. We study how the Casimir  
interaction is influenced by the direction of strain as well 
as the strain modulus. In addition, we also show how the 
strain engineering on graphene affects the Casimir interac-
tions between semi-infinite substrates.  

We theoretically study the strain effect on the Casimir inter-
actions in graphene based systems. We found that the inter-
actions between two strained graphene sheets are strongly
dependent on the direction of stretching. The influence of the
strain on the dispersion interactions is still strong in the pres-
ence of dielectric substrates but is relatively weak when the
substrate is metallic. Our studies would suggest new ways to
design next generation devices.  
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The Casimir energy per unit area between two parallel 
flat bodies at T = 0 K, separated by a distance a, is given 
by the Lifshitz formula [13, 14]  
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where  is the Planck constant, 
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||= +  is the wave 

vector perpendicular to the object surface, k||  is the wave 
vector parallel to the surface, c is the speed of light and ξ  
is an imaginary frequency with .iω ξ=  R1 and R2 are the 
reflection coefficient matrices of object 1 and 2, respec-
tively, given by [15]  
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where 0μ  is the permeability of free space, 0ε  is the vacuum 

permittivity,  
2

2
2k k

c
ξε||= + ,  ( )iε ε ξ∫  is  the  dielectric  

function of substrate as a function of imaginary frequen-
cies, the subscripts p and s denote for transverse magnetic 
(TM) and transverse electric (TE) mode, respectively. xxσ , 

yyσ , xyσ  and yxσ  are graphene optical conductivities for 
each respective direction.  

For unstrained and free-standing graphene, xxσ =  
( )yy iσ σ ξ=  and 0xy yxσ σ= = . The optical conductivity for 

low frequency (ξ ≤ 3 eV) is well described by the Kubo 
formalism [16]. This theory is consistent with experimental 
results at low temperature, and ( )iσ ξ  becomes the univer-
sal conductivity 2

0 /4eσ = .  
Under the uniaxial strain, the optical conductivity of 

graphene can be expressed by [17]  

0 0(1 2 ) (1 2 )xx xx yy yyJ Jσ γε σ σ γε σ= - , = - , 

02xy yx xy Jσ σ γε σ= = - , (3) 

where 1γ β= -  and 3β =  is the Grüneisen parameter, J is 
the Jacobian determinant calculated by 1/det ( )I γε- , and I 
is the identity matrix 2 × 2. xxε , yyε  and xyε  are strain com-
ponents in the strain tensor ε [18]  

 
Figure 1 Illustration of strained graphene with angle θ made by 
the direction of extensional strain and the x-axis. 
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where ε is the strain modulus, ν is the Poisson’s ratio and θ 
is an angle made by the direction of the principal strain and 
the x-axis illustrated in Fig. 1. The x-axis is defined as the 
axis parallel to the zigzag direction. For a graphene sheet, 

0 14ν = .  is a value calculated by ab initio simulations [19].  
To study the effect of uniaxial strains on the dispersion 

interactions, we calculate the Casimir energy between two 
graphene sheets versus the direction of stretching with re-
spect to the x-axis at 30a =  nm and show results in Fig. 2. 
The TM mode is known to have a much more significant 
role in the Casimir interaction at small distances compared 
to the TE mode. xxσ  and yyσ  are decisive factors for the 
TM mode and the TE mode, respectively. We found that at 

56°θ ª , 0xxσ σ=  and the ratio of 0/E E  is independent of 
the strain modulus ε. At the same angle with 56°θ £ , an 
increase of ε causes a decrease of 0xxσ σ< . As a result, in-
creasing ε leads to the reduction of the magnitude of the  
 

 
Figure 2 Relative Casimir energy between two graphene sheets 
normalized by the perfect metal 2 3

0 /720E c aπ=  as a function of 
θ with various values of the strain modulus. 
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Figure 3 Relative Casimir energy between two strained graphene 
sheets on top of silica substrate normalized by the perfect metal 

0E  as a function of θ with various ε values. 
 

Casimir energy. For 56°θ ≥ , larger ε values result in 
greater values of 0| / |E E  because 0xxσ σ>  is also larger.  

For relatively small strain moduli ( 0 01)ε £ . , the ratio 
0/E E  remains almost constant as the angle θ increases. 

This suggests that the strain effect weakly influences the 
Casimir  energy between two graphene sheets.  Applying 
more than 1% mechanical strain allows us to significantly 
tune the Casimir force by rotating the direction of stretch-
ing. This finding also shows that the Casimir interactions 
are proportional to 31/a , the same as the Casimir energy be-
tween two perfectly conducting plates. However, the calcu-
lated value 0/ 0 0053E E ª - .  indicates that the dispersion 
energy in the two-graphene-sheet system is much smaller 
than that in the two-ideal-metal system, which is consistent 
with the previous study [16].  

To investigate the impact of the substrate on the 
Casimir energy as well as the strain effect of graphene on 
Casimir interaction between semi-infinite substrates, we 
consider the substrates made of silica and gold. For silica 
substrate, the dielectric function is described by the oscilla-
tor model [8, 20]  
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where iC  and iω  are an oscillator’s strength and resonant 
frequency, respectively, in the i-th mode. The parameter 
values are shown in Ref. [20]. The parameter set and 
model show a good agreement between experimental data 
and theoretical calculations of the Casimir force between a 
silica plate and gold sphere immersed in bromobenzene [20].  

For gold substrate, we use the Drude model to describe 
its dielectric function [20, 21]  
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where p 9 0 eVω = . , 0 035 eVγ = .  are the plasma frequency 
and the damping parameter of Au, respectively.  

 
Figure 4 Relative Casimir energy between two strained graphene 
sheets on top of gold substrates, normalized by the perfect metal 

0E  as a function of θ with various ε values. 
 

Figure 3 shows the Casimir energy between strained 
graphene sheets located on SiO2 substrates at a = 30 nm. It 
was found that graphene has a significant influence on  
the Casimir interaction in such systems when the sub- 
strate is a dielectric material [8, 11]. Although silica sub-
strates enhance this interaction, the features of Fig. 3 are 
similar to those of Fig. 2. We see again that the Casimir 
energy has the same value for various tensible strains at 

56°θ ª .  
The screening effect of a graphene coating on a metal-

lic substrate has a weak influence on the Casimir interac-
tions between two metal plates. As shown in Fig. 4, the in-
tersection point of the curves has shifted to 72°θ ª . How-
ever, the ratio 0/E E  diminishes slightly as θ increases, even 
at large ε. max min max|( )/ | 0 4%E E E- = .  for the system of the 
strained graphene sheets on gold substrates. The value is 
much smaller than that in the case of the strained graphene 
sheets on silica substrates (15.33%). The small ratio 0/E E  
is attributed to the transparency of graphene sheets when 
they are on gold substrates. This finding is consistent with 
a recent study [11]. Authors in Ref. [11] showed that an un-
strained- and pristine-graphene coating has a small effect 
on metallic substrates. As a result, strain engineering on 
graphene cannot be exploited to tune the Casimir interac-
tion in metal systems.  

In summary, the Casimir interaction in the strained gra-
phene systems has been theoretically investigated using the 
Lifshitz theory. Our model shows that the dispersion inter-
action heavily depends on the graphene optical conductivi-
ties significantly varied by applying the mechanical strain. 
Changing the strain modulus or the direction of applied 
strain with respect to the zigzag direction considerably 
modifies the Casimir interaction between two strained gra-
phene sheets with and without silica substrate. However, at 

56°θ ª  for graphene sheets with and without silica sub-
strates, and 72°θ ª  for graphene sheets on gold substrates, 
the Casimir energy is not influenced by the stretching. As 
gold substrates coated by strained graphene sheet, the ratio 

0/E E  nearly remains constant. This indicates that there is 
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no way to tailor the Casimir interaction in metal systems 
using graphene. Our findings are extremely useful for the 
exploration of state-of-the-art applications.  
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