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Electronic band structure of the bilayer graphene superlattices with d-function magnetic barriers

and zero average magnetic flux is studied within the four-band continuum model, using the transfer

matrix method. The periodic magnetic potential effects on the zero-energy touching point between

the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly

analyzed. Magnetic potential is shown also to generate the finite-energy touching points between

higher minibands at the edges of Brillouin zone. The positions of these points and the related dis-

persions are determined in the case of symmetric potentials. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4896530]

I. INTRODUCTION

As is well-known from semiconductor physics, the elec-

tronic band structure of materials could be essentially modified

by an external periodic potential, resulting in unusual transport

and optical properties.1 That is why the electronic band structure

of graphene under a periodic potential (graphene superlattice)

was extensively studied from the early days of graphene physics.

For single layer graphene superlattices (SLGSLs), the electronic

band structure has been in detail examined in a number of works

for periodic potentials of different natures (electric2–5 or

magnetic6–10) and different shapes (Kronig-Penney,2,5,7,10 co-

sine,3 or square4). Interesting findings have been reported such

as a strongly anisotropic renormalization of the carrier group ve-

locity and an emergence of extra Dirac points (DPs) in the elec-

tronic band structure of electric SLGSLs (Refs. 2–5) or an

emergence of finite-energy DPs in the electronic band structure

of magnetic ones.8–10

Concerning the electronic band structure of bilayer gra-

phene superlattices (BLGSLs), there are fewer works and

they are all devoted to the case of electric potentials.11–14

The most impressive feature observed in the electronic band

structure of the electric BLGSLs studied (with different

potential shapes: d-function,11,14 rectangular,12 or sine13) is

an emergence of a pair of new zero-energy touching points

(TPs) or an opening of a direct band gap, depending on the

potential parameters.15 This unusual feature was not found in

the electronic band structure of SLGSLs. It is also assumed

to be common for all electric BLGSLs with any potential

shape, providing the average potential to be zero.

To our best knowledge, no works on the electronic band

structure of BLGSLs with magnetic potentials have been

reported. Note that while sharing with single layer graphene

many properties important for electronics applications such as

the excellent electric and thermal conductivities at room tem-

perature or a possibility to control the electronic structure

externally, bilayer graphene (BLG) exhibits the privileges,

including the ability to open a band gap in the energy spectrum

and to turn it flexibly by an external electric field.16–18 Given

the importance of BLG, it would be appropriate to study the

electronic properties of various BLG-based structures.

Graphene superlattices are of not only theoretical but

also experimental and application interests. Experimentally,

SLGSLs have been constructed for graphene on ruthenium19

or iridium20 surfaces. Other possible techniques that may be

applied for creating SLGSLs as well as BLGSLs include

the electron-beam induced deposition of adsorbates21 and the

use of periodically patterned gates. The very fact that the

band structure of graphene superlattices may be finely engi-

neered by using appropriate periodic potentials opens differ-

ent ways to fabricate graphene-based electronic devices.

The purpose of the present work is to study the electronic

band structure of BLGSLs with periodic d-function magnetic

barriers (magnetic BLGSLs—MBLGSLs). It is shown that the

studied magnetic potential does not destroy the isotropically

parabolic behavior of the band dispersion related to the origi-

nal zero-energy TP, but makes the corresponding effective

mass renormalized and might cause a shift of this point along

the direction perpendicular to the superlattice direction in the

wave-vector space. The magnetic potential is also shown to

generate finite-energy TPs with linear and anisotropic disper-

sions at the edges of Brillouin zone. These findings make the

band structure of MBLGSLs cardinally different from that of

electric BLGSLs examined.

The paper is organized as follows. Section II describes

the model of MBLGSLs under study and the calculating

method. Section III presents calculating results which are

in detail analyzed with an attention focused on the TPs

identified at zero- as well as finite-energies. The paper is

closed with an additional discussion and a brief summary

in Sec. IV.

II. MODEL AND CALCULATING METHOD

We consider MBLGSLs arising from an infinitely flat

Bernal-stacked BLG in a periodic magnetic field illustrateda)Electronic mail: nvlien@iop.vast.ac.vn
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schematically in Fig. 1(a). The magnetic field is assumed to

be uniform in the y-direction and staggered as periodic

d-function barriers of alternate signs in the x-direction, so for

a single lattice unit the field profile has the form

~B ¼ B0½dðxþ dB=2Þ � dðx� dB=2Þ�ẑ; (1)

where B0 is the barrier strength and dB is the barrier width.

The corresponding vector potential ~A in the Landau gauge is

~AðxÞ ¼ ðB0lB=2Þ ½hðdB=2� jxjÞ � hðjxj � dB=2Þ�ŷ; (2)

where h(x) is the Heaviside step function and lB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hc=eB0

p
is the magnetic length.

Totally, as can be seen in Fig. 1(b), A(x) describes a

Kronig-Penney-type periodic potential along the x-direction

with dB is the barrier width, dW is the well width,

d¼ dBþ dW is the superlattice period, and A0�B0lB is the

potential strength.

In fact, the same periodic d-function magnetic barriers

of Eq. (1) have been before used to model magnetic

SLGSLs.6,7,10 Its advantage is a richness of fundamental

electronic properties, while a mathematical treatment is

rather simple. In practice, such the d-function model should

be hold as long as the de Broglie wavelength of quasi-

particles is much larger than the typical width of magnetic

barriers.6

To justify the consideration realized below, we will

ignore intervalley scattering assuming that the widths dB(W)

are much larger than the lattice constant in graphene. All

spin-related effects are also neglected. Besides, potentials

on both graphene layers are assumed to be the same at a

given (x, y)-point. Under these conditions, the low-energy

excitations near one original TP (say, K) in the energy band

structure can be generally described in the four-band con-

tinuum nearest-neighbor, tight-binding model with the

Hamiltonian22

H ¼

0 vFp̂ t? 0

vFp̂þ 0 0 0

t? 0 0 vFp̂þ

0 0 vFp̂ 0

0
BBB@

1
CCCA ; (3)

where p̂ ¼ px þ ipy; vF ¼
ffiffiffi
3
p

ta=ð2�hÞ � 106 m=s is the

Fermi velocity, t� 3 eV is the intralayer nearest-neighbor

hopping energy, a¼ 2.46 Å is the lattice constant of gra-

phene, and t?� 0.39 eV is the interlayer nearest-neighbor

hopping energy. The magnetic field effect is here accounted

for by the momentum operator ~p ¼ ðpx; pyÞ � �i�h ~r þ e~A.

The Hamiltonian of Eq. (3) is limited to the case of symmet-

ric on-site energies. Also, other interlayer hopping parame-

ters are here neglected since they are much smaller than t?
and may be effectively suppressed by disorder.17,18,23

Without the potential ~A, i.e., for pristine BLG, the

Hamiltonian of Eq. (3) yields the hyperbolic band dispersion

which interpolates between a linear dispersion at large mo-

mentum and a quadratic one in the vicinity of the TP.18 Such

a hyperbolic BLG band dispersion was experimentally

observed24,25 and, interestingly, it is still survived (with

renormalized parameters) even if the electron-electron inter-

action is taken into account.23,26 We are here interested in

the effects induced by the periodic magnetic potential ~A on

the BLG non-interacting band structure.

Due to a periodicity of the potential A (along the x-direc-

tion) the time-independent Schr€odinger equation HW¼EW
for the Hamiltonian H of Eq. (3) could be most conveniently

solved using the transfer matrix method.11,27 Actually, our

ultimate aim is to find the Eð~kÞ-relation that describes the

band structure of MBLGSLs under study. This could be

done in the way similar to that realized in Ref. 11 for electric

BLGSLs in the four band model.

Following the general idea of the T-matrix method,27 we

first consider the wave functions of the equation HW¼EW
in the regions of constant potential, A(x)¼A0¼ constant.
For H of Eq. (3) these wave functions can be generally writ-

ten in the form W ¼ QRðxÞ½A;B;C;D�T expðikyyÞ. They can

be then simplified by the linear transformation Q! T Q
with11

T ¼ 1

2

1 0 �1 0

0 1 0 �1

1 0 1 0

0 1 0 1

0
BBBB@

1
CCCCA
:

So

Q! T Q ¼

1 1 0 0

k1=E �k1=E �ik0y=E �ik0y=E

0 0 1 1

�ik0y=E �ik0y=E k2=E �k2=E

0
BBB@

1
CCCA;

(4)

whereas the T -transformation does not change the matrix

R(x)

RðxÞ ¼ diag ½ eik1x; e�ik1x; eik2x; e�ik2x �; (5)

FIG. 1. Model of MBLGSLs under study: (a) Periodic d-function magnetic

barriers of alternate signs, ~B0 and �~B0 [red arrows] and (b) corresponding

1D periodic vector potential ~AðxÞ [blue curve] with A0 the potential strength,

dB is the barrier width, and dW is the well width [the period d¼ dBþ dW].

The dashed-line box in (a) describes the unit cell in T-matrix calculations.
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where k0y ¼ ky þ A0 and kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ð�1ÞnE� k02y

q
with

n¼ 1, 2.

Further, the amplitudes AI of the wave function before

an unit cell and those after it, AF, could be related to each

other by the T-matrix

AF ¼ TðF; IÞAI: (6)

On the other hand, the Bloch’s theorem states

QIRIðxÞAF ¼ expðikxdÞQIRIðx� dÞAI; (7)

where kx is the Bloch wave number and d is the potential

period.

Comparing Eq. (6) with Eq. (7) gives rise to the follow-

ing equation:

det ½ T � eikxdR�1
I ðdÞ � ¼ 0: (8)

This is just the equation solutions of which give the desirable

Eð~kÞ-relation.

In reality, the transfer matrix Eq. (8) is very general

with matrices T� T(F, I) and RI defined by the Hamiltonian

examined. For the Hamiltonian under study, with the unit

cell described in Fig. 1(a), the T-matrix in Eq. (8) is defined

as

TðF; IÞ ¼ R�1
W ðdBÞQ�1

W QBRBðdBÞQ�1
B QW ;

where QW(B) and RW(B) are, respectively, defined in Eqs. (4)

and (5) for A0¼AW(B) and RI�RW.

In the case of SLGSLs, when the Hamiltonian H and,

therefore, T and RI are 2� 2 matrices, Eq. (8) can be analyti-

cally solved that gives straightaway a general expression for

the dispersion relation, Eð~kÞ.10 For MBLGSLs in the four-

band model of Eq. (3), Eq. (8) with (4� 4)-matrices T and RI

becomes too complicated. It cannot be in general solved ana-

lytically and, therefore, the dispersion relation cannot be

derived explicitly.

Note that for the periodic magnetic potential model of

interest the only way of breaking its symmetry is associated

with a difference between dB and dW. So the parameter

q¼ dW/dB is introduced to describe asymmetric effects. The

MBLGSLs with q¼ 1 (q 6¼ 1) will be then referred to as sym-

metric (asymmetric) MBLGSLs. Thus, the studied potential

model is entirely characterized by the three parameters, A0,

d, and q.

III. ELECTRONIC BAND STRUCTURES

In order to bring out the band structure of a MBLGSL,

we should numerically solve Eq. (8) for defined values of pa-

rameters A0, d, and q. Calculations have been performed for

different values of these parameters and typical results

obtained are presented in Figs. 2 and 3.

Zero-energy TP—Figs. 2(a), 2(c), and 2(e) show the

lowest conduction and the highest valence minibands in the

energy spectra of the MBLGSLs with A0¼ 0.5, d¼ 4, and

different values of q: (a) q¼ 1 (symmetric MBLGSLs), (c)

q¼ 1.5, and (e) q¼ 0.5 (asymmetric MBLGSLs). The boxes

(b), (d), and (f) present the contour plots of the lowest

conduction miniband for the energy spectra shown in (a),

(c), and (e), respectively. (Due to a symmetry of spectra with

respect to the (E¼ 0)-plane, the analysis is hereafter concen-

trated on the positive energy part). For comparison, we recall

that in the band structure of the pristine BLG there is a single

zero-energy TP located at ~k ¼ 0 (i.e., the K-point), in the vi-

cinity of which the dispersion has the parabolic shape: E ¼
6�h2k2=2m with the isotropic mass m ¼ t?=2v2

F.18 Below, for

convenience, dimensionless quantities are introduced: A0 in

FIG. 2. Zero-energy TP. Lowest conduction and highest valence minibands

[(a), (c), and (e)] and corresponding contour plots [(b) to (a), (d) to (c), and

(f) to (e)] are shown in three cases: q¼ 1 [(a) and (b)], q¼ 1.5 [(c) and (d)],

and q¼ 0.5 [(e) and (f)]. In all the cases: d¼ 4 and A0¼ 0.5. The zero-

energy TP is found at (E, kx, ky)¼ (0, 0, 0) in ((a), (b)); (0, 0, 0.1) in ((c),

(d)); and (0, 0, �0.167) in ((e), (f)). All contour plots show isotropic

dispersions.

FIG. 3. Finite-energy TP. Two lowest conduction minibands [(a) and (c)]

and corresponding contour plots [(b) to (a) and (d) to (c)] are shown in two

cases: q¼ 1 [(a) and (b)] and q¼ 1.5 [(c) and (d)]. In both cases: d¼ 4 and

A0¼ 0.5. Clearly, there is a TP at the edge of Brillouin zone, kx¼p/d [or, in

equivalence, kx¼�p/d], which is located at (E, kx, ky)¼ (E1� 0.37 t?, 0, 0)

in (a) or ðE1 � 0:375 t?; 0; k
ðf Þ
y � 0:09Þ in (c). Contour plots in (b) and (d)

show anisotropic dispersions.
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units of t?/(evF), energies in units of t?, and x (or d) in

ð�hvF=t?Þ. For example, the value A0¼ 0.5 describes the field

of B0¼ 2.3 T or d¼ 4 means the period of 6.75 nm, given t?
and vF as defined above.

In the case of q¼ 1 (symmetric MBLGSLs), Fig. 2(a)

shows a clear zero-energy TP between the two minibands at

ð~k ¼ 0Þ with an isotropic band dispersion [see contour plot

in (b)]. It seems that in this particular case of ky¼ 0, the mat-

rices in Eq. (8) become so simple that the energy spectrum

can be from this equation deduced in the form of the tran-

scendental equation

½ cosðkxdÞ � cosðk1dÞ�½cosðkxdÞ � cosðk2dÞ�

þð4A4
0=k2

1k2
2Þ sinðk1dWÞ sinðk1dBÞ sinðk2dWÞ sinðk2dBÞ

þð2A2
0=k1k2Þ½f1 þ f2 cosðkxdÞ � sinðk1dÞ sinðk2dÞ � ¼ 0;

(9)

where f1 ¼ sinðk1dWÞ sinðk2dWÞ þ sinðk1dBÞ sinðk2dBÞ; f2 ¼
sin ðk1dWÞ sinðk2dBÞ þ sinðk1dBÞ sinðk2dWÞ, and k1ð2Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E26E� A2
0

p
.

Next, expanding Eq. (8) to the lowest order in E, kx, and

ky we straightaway obtain the band dispersion in the vicinity

of the zero-energy TP examined

E ¼ 6�h2k2=2m� with m� ¼ m
A0d

2 sinh A0d=2ð Þ : (10)

This dispersion has the same isotropically parabolic shape as

that for the pristine BLG, but the effective mass is renormal-

ized, depending on the product (A0d) as a single parameter.

Thus, impressively, the only effect a symmetrically peri-

odic magnetic potential [q¼ 1] can cause on the original

zero-energy TP is making the effective mass renormalized.

Equation (10) shows that m* is always less than m (for the

pristine BLG): ðm�=mÞ ! 1 at A0d� 1 and! 0 in the limit

of large A0d.

Now, we consider the more general case of asymmetric

MBLGSLs [q 6¼ 1]. In this case, as can be seen in Fig. 2, the

most noticeable feature is the magnetic potential induced

shift of the original zero-energy TP along the (kx¼ 0)-direc-

tion in either the positive [if q> 1, see Figs. 2(c) and 2(d)]

or the negative direction of ky [if q< 1, see Figs. 2(e) and

2(f)]. An intuitive estimation reveals that the magnetic

potential shifts the zero-energy TP from the original (E¼ 0,

kx¼ 0, ky¼ 0)-point to the ðE ¼ 0; kx ¼ 0; ky ¼ k
ðqÞ
y Þ-point

with k
ðqÞ
y depending on the potential parameters as

k
ðqÞ
y ¼ ½ðq� 1Þ=ðqþ 1Þ�A0. In Figs. 2(c) and 2(d) [q¼ 1.5]

or 2(e) and 2(f) [q¼ 0.5], the k
ðqÞ
y -coordinate is equal to 0.1

or ��0.167, respectively (given A0¼ 0.5). Note that k
ðqÞ
y

does not depend on the superlattice period d.

Further, as can be seen in Figs. 2(d) and 2(f), it seems

that even for asymmetric MBLGSLs, the band dispersion in

the vicinity of the zero-energy TP is still isotropic. This

statement could be justified in the way introduced in Refs. 5

and 14, writing Eq. (8) in the form f(E, kx, ky)¼ 0, then

expanding f to the lowest order in E, kx, and ky in the vicinity

of the TP examined, i.e., the ðE ¼ 0; kx ¼ 0; ky ¼ k
ðqÞ
y Þ-point.

In the result, we obtain the relation

E ¼ 6
�h2

2m�q
½ k2

x þ ðky � k
qð Þ

y Þ2 � (11)

with the mass m�q depending on A0, d, and q as

m�q ¼ m
2qA0d

qþ 1ð Þ2sinhð2qA0d= qþ 1ð Þ2Þ
: (12)

These equations show that while moving the zero-energy TP

along the ky-direction from ky¼ 0 to ky ¼ k
ðqÞ
y , the asymmet-

rically periodic magnetic potentials keep the related band

dispersion isotropically parabolic and electron-hole symmet-

ric with an effective mass renormalized, depending on (A0d)

and q. Certainly, Eqs. (11) and (12) are reduced to Eq. (10)

in the case of q¼ 1.

Like m* in Eq. (10), the mass m�q in Eq. (12) is always

less than m (for the pristine BLG) and the ratio m�q=m monot-

onously decreases with increasing the product (A0d). Given

(A0d), the mass m�q varies with q, reaching a single minimum

at q¼ 1 (i.e., for symmetric potentials), where m�q ¼ mA0d=
2sinhðA0d=2Þ.

Thus, a shift in ky-coordinate and a renormalization of

effective mass are the only two effects the periodic magnetic

potential studied can induce on the zero-energy TP in the

energy band structure of BLG.

Finite-energy TPs—Fig. 3 shows the two lowest con-

duction minibands [(a) and (c)] and the corresponding con-

tour plots [(b) to (a) and (d) to (c)] for just the two

MBLGSLs examined in Figs. 2((a) and (b)) and 2((c) and

(d)). In both the cases, q¼ 1 ((a) and (b)) and q¼ 1.5 ((c)

and (d)), it is clear that (i) there exist the finite energy TPs

between the two minibands at the edges of the Brillouin

zone, ðkx ¼ 6p=d; ky ¼ k
ðf Þ
y Þ, where k

ðf Þ
y depends on A0 and

q and equals to zero in the case of q¼ 1 (symmetric

MBLGSLs) [Figs. 3(a) and 3(b)] and (ii) the band disper-

sions related to these TPs are anisotropic [Figs. 3(b) and

3(d)]. Similar TPs between minibands are also existed at

higher energies (not shown). Describing quantitatively these

TPs is generally beyond our ability except the case of sym-

metric MBLGSLs, when k
ðf Þ
y ¼ 0. In this case, with zero ky-

coordinate, the energy location as well as the band dispersion

related to the finite energy TPs observed can be found from

Eq. (9) in the same way as that used above for the zero-

energy DP.

Indeed, for symmetric MBLGSLs, substituting the coor-

dinates kx¼6p/d and ky¼ 0 of the finite-energy TPs into

Eq. (9), we obtain the relation

cosðk1d=2Þcosðk2d=2Þ�ðA2
0=k1k2Þsinðk1d=2Þsinðk2d=2Þ¼0;

(13)

where k1ð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E26E� A2

0

p
. This equation yields the

energy-coordinates En of all finite-energy TPs generated at

the edges of the Brillouin zone in the energy spectra of the

symmetric MBLGSL, given A0 and d. So, these TPs are

located at (E¼En, kx¼6p/d, and ky¼ 0).

To find {En}, we numerically solved Eq. (13) for differ-

ent values of A0 and d. Some results obtained are presented,

123707-4 Pham, Nguyen, and Nguyen J. Appl. Phys. 116, 123707 (2014)
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for example, in Fig. 4, where the three lowest energies En

(n¼ 1, 2, 3) are plotted as a function of A0 [Fig. 4(a) for

d¼ 4] or d [Fig. 4(b) for A0¼ 0.5]. Fig. 4(a) shows that while

the only position E1 of the lowest finite-energy touching

point is slightly descended, the positions of higher touching

points [E2,3 in the figure and higher En not shown] consider-

ably rise with increasing the potential strength A0. Fig. 4(b)

shows that all the energies En fall sharply at d	 5 and then

smoothly decrease at larger period d. Particularly, in Fig.

3(a), the lowest finite energy TP is located at E1� 0.37 t?.

Next, to understand the anisotropic contour plots in Fig.

3(b), we have to find the dispersion relation, following the

same way as described above. Thus, by expanding Eq. (8) in

the vicinity of the (E¼En, kx¼p/d, and ky¼ 0)-point, we

arrive at the linear dispersion relation

E� En ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

nxðkx � p=dÞ2 þ v2
nyk2

y

q
; (14)

where vnx and vny are carrier group velocity components

depending on A0 and d. With the dispersions of Eq. (14), the

finite-energy TPs studied could be really referred to as the

finite-energy DPs.

Unfortunately, we are unable to derive analytical

expressions for the velocities vnx and vny. So, for instance,

we show in Fig. 4, the numerical values of v1x [solid line]

and v1y [dashed line] plotted against the potential strength A0

[Fig. 4(c)] or the period d [Fig. 4(d)] for the lowest (and

most important) finite-energy DP (n¼ 1). At small A0 and/or

d, a large difference between the two velocities, v1x 
 v1y,

demonstrates a strongly anisotropic dispersion. Given d
[Fig. 4(c)] (or A0 [Fig. 4(d)]), there exists a single value of

A0 ¼ A
ðcÞ
0 (or d¼ d(c)), where v1x¼ v1y showing an isotropic

dispersion [A
ðcÞ
0 � 1:5 in Fig. 4(c) and d(c)� 10.435 in Fig.

4(d)]. Beyond this point, an anisotropy in dispersion is

recovered, but it is much weaker than in the region of small

A0 and/or d. Returning to Figs. 3(a) and 3(b) for the symmet-

ric MBLGSL with A0¼ 0.5 and d¼ 4, we have v1x/v1y� 2.1.

This result explains a anisotropy in the contour plots in

Fig. 3(b). For higher finite-energy DPs (n¼ 2, 3,…), calcula-

tions show much more complicated A0- and d-dependences

of velocities (not shown) that demonstrate a strongly aniso-

tropic dispersion at small as well as large values of A0 and/or

d except a single point where vnx¼ vny.

In the opposite case of asymmetric MBLGSLs, q 6¼ 1

[Figs. 3(c) and 3(d)], we are able only to qualitatively

comment that the finite-energy TPs with linear dispersion

should be still generated at the edges of the Brillouin zone,

kx¼6p/d, but at non-zero ky ¼ k
ðf Þ
y and at energies which

depend on potential parameters in the way much more com-

plicated than Eq. (13) [in Figs. 3(c) and 3(d) k
ðf Þ
y � 0:09 and

E1� 0.375 t?].

Density of States—With the band structure determined

we can calculate its most important characteristics—the den-

sity of states (DOS). Calculations have been performed in

the same way as that suggested for SLGSLs in Ref. 7.

Fig. 5(a) shows as an example of the DOS for the

MBLGSL studied in Fig. 3(a) [red solid line] in comparison

to that for the pristine BLG [blue dashed line]. The arrow

indicates the energy-position of the lowest finite energy DP,

E1, calculated in Fig. 4(a). It should be first noted that the

step jump at jEj ! 0 in both the DOS-curves, solid for

MBLGSL as well as dashed for pristine BLG, are associated

with the parabolic shape of the band dispersion in the vicin-

ity of the neutral point. At larger jEj, clearly, the periodic

magnetic potential makes the solid line rather fluctuated,

comparing to the dashed one. A similar fluctuation has been

observed in the DOSs of SLGSLs4 and electric BLGSLs.14

Such a periodic potential induced fluctuation in the DOS

should be certainly manifested itself in transport properties

of the structure.

To understand the DOS-fluctuation observed, we present

in Fig. 5(b) the cut of the band structure along the (ky¼ 0)-

plan for the same MBLGSL with DOS shown in Fig. 5(a).

The dips at finite energies in the DOS solid curve in Fig. 5(a)

are clearly associated with the TPs seen in Fig. 5(b), whereas

FIG. 4. Three lowest from En determined in Eq. (13) are plotted versus A0

[(a) for d¼ 4] or d [(b) for A0¼ 0.5], n¼ 1, 2, and 3 (from bottom). In (c) or

(d) velocities v1x [red solid line] and v1y [blue dashed line] in Eq. (14) versus

A0 [(c) for d¼ 4] or d [(d) for A0¼ 0.5], respectively.

FIG. 5. (a) DOS for the MBLGSL with energy band structure presented in

Fig. 3(a) [red solid line] and that for the pristine BLG [blue dashed line] are

compared [arrow indicates the energy position E1 of the lowest finite energy

DPs]; (b) Cut along the (ky¼ 0)-plane of the band structure with the DOS

shown in (a).
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the peaks are located at the bending points between these

TPs. Note that Fig. 5(b) also shows the TPs other than those

studied above. These TPs are however generated only at

higher energies and, therefore, should be less important from

transport properties point of view.

IV. CONCLUSION

We have studied the effects of a periodic d-function

magnetic field with zero average flux (say, along the x-direc-

tion) on the electronic band structure of BLGs. The potential

is characterized by the three parameters: the strength A0, the

period d, and the asymmetric factor q (the ratio between the

well width and the barrier width). It was shown that the mag-

netic potential (i) may move the original zero-energy TP

between the lowest conduction and the highest valence mini-

bands along the ky-direction from ky¼ 0 to a ky-coordinate,

which depends on q and A0 and equals to zero for symmetric

potentials with q¼ 1; (ii) does not destroy the isotropically

parabolic shape of the band dispersion related to this TP, but

makes the effective mass renormalized, depending on the

potential parameters; and (iii) generates the finite-energy

TPs between minibands at the edges of the Brillouin zone,

the position of which and the related anisotropically linear

dispersion are exactly identified in the case of symmetric

potentials. These finite-energy DPs manifest themselves in

the fluctuation behavior of the density of states and, there-

fore, should cause some effect on the transport properties of

MBLGSLs.

For comparison, remind two related systems: electric

BLGSLs considered in Refs. 11–14 and magnetic SLGSLs

considered in Refs. 6, 7, and 10 for the potential with the

same shape of Eqs. (1) and (2). In the former systems, the

electric potential replaces the original zero-energy TP with

either a pair of new zero-energy TPs or a direct band gap,

depending on the potential parameters.11–14 It may also gen-

erate the finite-energy TPs with direction-dependent disper-

sions.14 In the latter, the magnetic potential leads to the

effects rather similar to those found in the present work,

including a potential induced shift of the zero-energy TP, an

isotropic renormalization of the group velocity related to this

point, and an emergence of finite energy DPs.10 We assume

that the findings shown above for MBLGSLs with d-function

magnetic barriers should robust against the changes in the

shape of magnetic barrier, providing the average flux to be

zero.

It should be finally noted that the MBLGSLs with

d-function magnetic barriers studied in the present work may

be realized using, for example, the narrow ferromagnetic

strips deposited on the top a BLG (see for a review28).

Recently, much attention is given to the substrate induced

graphene superlattices such as the graphene hexagonal boron

nitride moir�e superlattices (see Refs. 29 and 30 and referen-

ces therein).
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