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Abstract
It has been shown in a recent study (Nguyen et al 2014 Nanotechnology 25 165201) that
unstrained/strained graphene junctions are promising candidates to improve the performance of
graphene transistors which is usually hindered by the gapless nature of graphene. Although the
energy bandgap of strained graphene still remains zero, the shift of Dirac points in the k-space
due to strain-induced deformation of graphene lattice can lead to the appearance of a finite
conduction gap of several hundred meV in strained junctions with a strain of only a few per cent.
However, since it depends essentially on the magnitude of the Dirac point shift, this conduction
gap strongly depends on the direction of applied strain and the transport direction. In this work, a
systematic study of conduction-gap properties with respect to these quantities is presented and
the results are carefully analyzed. Our study provides useful information for further
investigations to exploit graphene-strained junctions in electronic applications and strain sensors.

Keywords: energy gap, graphene, strain, tight binding approach

1. Introduction

In spite of being an attractive material with excellent elec-
tronic properties [1], practical applications of graphene in
conventional semiconductor devices are still questionable due
to its gapless nature. In particular, the ON/OFF current ratio is
low while the saturation of current is poor in pristine graphene
transistors [2]. Many efforts of bandgap engineering in gra-
phene [11–14, 16] have been made to solve these issues. The
pioneer technique proposed [11] is to cut two-dimensional
(2D) graphene sheets into one-dimensional (1D) narrow
nanoribbons. In 2D graphene sheets, some options such as
Bernal-stacking of graphene on hexagonal boron nitride
substrate [12], nitrogen-doped graphene [13], graphene
nanomesh lattice [14, 15] and Bernal-stacking bilayer gra-
phene [16] have been explored. However, the possibility to
open a sizable bandgap in graphene as large as those of
standard semiconductors is still very unlikely. In particular, it
requires very good control of lattice geometry and edge dis-
order in narrow graphene nanoribbons (GNRs) [17] and in
graphene nanomesh lattices [18], while the bandgap opening

in bilayer graphene by a perpendicular electric field may not
be large enough for realistic applications [19]. Other methods
should be further verified by experiments.

On the other hand, graphene was experimentally
demonstrated to be able to sustain a much larger strain than
conventional semiconductors, making it a promising candi-
date for flexible electronics (see in a recent review [20]). For
instance, a graphene sheet on an unstretched poly-
dimethylsiloxane substrate can endure and show good
recovery of sheet resistance after 6% stretching [21]. On a
pre-stretched polydimethylsiloxane substrate, graphene even
showed stable sheet resistance up to 11%, and there was only
one order change in this resistance up to 25% stretching.
Especially, there are two recent works [22, 23] demonstrating
techniques to generate extreme strains (>10%) in graphene in
a controlled and nondestructive way. Garza et al [22]
demonstrated the generation of uniaxial strains by pulling
graphene using a tensile-MEMS while Shioya et al [23]
achieved both biaxial strained and isotropic compressive
strained states of graphene using thin-film-shrinkage meth-
ods. Interestingly, strain engineering has been suggested to
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be an alternative approach to modulating efficiently the
electronic properties of graphene nanomaterials [24]. In
particular, the bandgap has periodic oscillations in the
armchair GNRs [25], while the spin polarization at the rib-
bon edges (and also the bandgap) can be modulated by the
strain in the zigzag cases. In 2D graphene sheets, a finite
gap can open under large strains; otherwise, it can remain
close to zero but the Dirac points are displaced [24, 26–29].
Many interesting electrical, optical, and magnetic properties
induced by strain in graphene have been also explored; e.g.
see [24, 30–38].

In addition, local strain is a good option to improve the
electrical performance of graphene devices [24, 39–42]. For
instance, it has been shown to enhance the ON current in a
GNR-tunneling field effect transistor [39] and to fortify the
transport gap in GNR-strained junctions [42]. In a recent
work [43], we investigated the effects of uniaxial strain on
the transport in 2D unstrained/strained graphene junctions
and found that due to the strain-induced shift of Dirac
points, a significant conduction gap of a few hundred meV
can open with a small strain of a few percent. Note that the
mentioned conduction gap is the energy window within
which the Fermi energy can be varied and the junction
remains insulating. This type of strained junction was then
demonstrated to be an excellent candidate to improve the
electronic operation of graphene transistors. Hence, it
motivates us to further investigate the properties of this
conduction gap so as to optimize the performance of gra-
phene devices. On the one hand, the effects of strain should
be, in principle, dependent on its applied direction. On the
other hand, as a consequence of the shift of Dirac points
along the perpendicular axis, the conduction gap is predicted
to depend also on the transport direction. These properties of
the conduction gap will be clarified fully in the cur-
rent work.

2. Model and calculations

In this work, the π-orbital tight-binding model constructed in
[27] is used to investigate the electronic transport through the
graphene-strained junctions schematized in figure 1, where

the strain is applied to one half of a 2D graphene sheet as in
[43]. The Hamiltonian is = ∑H t c ctb nm nm n m

† , where tnm is the
hopping energy between nearest neighbor nth and mth atoms.
The application of a uniaxial strain of angle θ causes the

Figure 1. Schematic of unstrained/strained graphene junctions investigated in this work.

Figure 2.Dependence of graphene bandgap on the applied strain and
its direction: tensile (a) and compressive (b). The radius from the
central point indicates strain strength ranging from 0 (center) to 30%
(edge of maps), while the graphene lattice is superimposed to show
visibly the strain direction. The orange circle corresponds to the
strains of σ = 23%.
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following changes in the −C C bond vectors:
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where σ represents the strain and γ ≃ 0.165 is the Poisson
ratio [44]. The hopping parameters are defined as

σ σ= − −t t r r( ) exp [ 3.37( ( ) 1)]nm nm0 0 , where the hopping
energy = −t 2.7 eV0 and the bond length

≡ =r r(0) 0.142 nmnm 0 in the unstrained case. Therefore,
there are three different hopping parameters t1,2,3 corre-
sponding to three bond vectors ⃗r1,2,3, respectively, in the
strained graphene part of the structure (see figure 1). Here,
we investigate a 2D graphene channel, i.e., the lateral size W
(along the Oy direction) of the graphene sheet is much larger
than the length (along the Ox direction and, e.g., ∼ a few
tens of nm, as studied in [43]) of the active region. We
assume a 1D profile of applied strain, i.e., the strain tensor,
is a function of position along the transport direction while it
is constant along the perpendicular one. Note that here, Ox
(resp. Oy)—axis is parallel (resp. perpendicular) to the
transport direction. The transport direction, ϕ, and strain
direction, θ, are determined as schematized in figure 1.
Based on this tight-binding model, the two methods
described below can be used to investigate the conduction
gap of strained junctions.

Green’s function calculations. First, we split the gra-
phene sheet into the smallest possible unit cells periodically
repeated along the Ox/Oy directions with the indices p q,
respectively (similarly, see the details in [45]). The tight-
binding Hamiltonian can therefore be expressed in the

following form:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑= + →H H H , (2)tb

p q

p q

p q

p q p q

,

,

,

, ,

1 1

1 1

where Hp q, is the Hamiltonian of cell p q{ , }, and →Hp q p q, ,1 1

denotes the coupling of cell p q{ , } to its nearest neighbor cell
p q{ , }1 1 . We then Fourier transform the operators in
equation (2) as follows:

∑=
κ

κ
κc

M
e c

1
ˆ , (3)p q

cell

iq
p, ,

y

y
y

where Mcell is the number of unit cells and κ ≡ k Ly y y with the
size Ly of unit cells along the Oy direction. The Hamiltonian
(2) is finally rewritten as a sum of κy-dependent 1D compo-
nents:

∑

∑

κ

κ κ κ κ

=

= + +

κ

→ − → +

H H

H H H H

ˆ ( )

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) (4)

tb y

y

p

p p y p y p p y1 1

y

With the Hamiltonian in this form, the non-equilibrium
Greenʼs function formalism can easily be applied to compute
transport quantities in the graphene-strained junction with
different transport directions. In particular, the conductance at
zero temperature is determined as:

 ∫ϵ
π

κ ϵ κ= e W

hL
d( ) ( , ), (5)F

y BZ
y F y

2

where ≡W M Lcell y and  ϵ κ( , )F y is the transmission prob-
ability computed from the Greenʼs functions. The integration
over κy is performed in the first Brillouin zone. As in [18], the
gap of conductance (conduction gap) is then measured from
the obtained data of conductance.

Bandstructure analysis. To determine the conduction
gap of strained junctions, we find that another simple way
based on the analysis of graphene bandstructures could be
efficiently used. It is described as follows. Since the con-
ductance is computed from equation (5), the appearance of a
conduction gap is essentially governed by the gaps of trans-
mission probability, which is determined from the energy
gaps in the unstrained and strained graphene sections. These
energy gaps can be defined directly from the graphene
bandstructures. Therefore, our calculation has two steps,
similar to that in [43]. From the graphene bandstructures
obtained using the tight-binding Hamiltonian above, we first
look for the energy gaps κE ( )unstrain

gap
y and κE ( )strain

gap
y for a

given κy of two graphene sections. The maximum of these
energy gaps determines the gap κE ( )junc

gap
y of transmission

probability through the junction. Finally, the conduction gap
Econd gap. is obtained by looking for the minimum value of

κE ( )junc
gap

y when varying κy in the whole Brillouin zone.

Figure 3. Conductance ( =G e W hLy0
2 ) as a function of energy in

graphene-strained junctions for σ = 4% with different strain
directions. The transport along the armchair direction (ϕ = 0) is
considered. The data obtained in a uniformly strained graphene is
displayed for the comparison.
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In particular, the energy bands of strained graphene are
given by

⃗ = ± ∣ + + ∣⃗ ⃗ ⃗ ⃗E k t e t e t( ) , (6)i ik a k a
1

·
2

·
3

1 2

where the plus/minus sign corresponds to the conduction/
valence bands, respectively. For a given direction ϕ of
transport, in principle, the vectors L⃗x y, defining the sizes of
unit cells along the Ox and Oy directions, respectively, can be
always expressed as ⃗ = ⃗ + ⃗n nL a ax 1 21 2 and

⃗ = ⃗ + ⃗m mL a ay 1 21 2 with ϕ =
⃗ ⃗

∥ ⃗ ∥∥ ⃗ ∥
cos

L L

L L

·x x

x x

0

0 and ϕ =sin

⃗ ⃗

∥ ⃗ ∥∥ ⃗ ∥

L L

L L

·x y
0

x y
0

while ⃗ = ⃗ ± ⃗L a ax y
0

1 2, . Note that n1,2 and m1,2 are

integers, while = − +
+

m

m

n n

n n

2

2
1

2

1 2

2 1
, i.e., ⃗ ⃗ =L L· 0x y . In other

words, we have the following expressions

⃗ =
− ⃗ + ⃗

−
⃗ =

⃗ − ⃗

−
m n

n m n m

m n

n m n m
a

L L
a

L L
; . (7)1

x y
2

x y2 2

2 1 1 2

1 1

2 1 1 2

On this basis, the energy bands can be rewritten in terms of
κ = ⃗ ⃗ ≡k Lk L· ( )x y x y x yx y, , , , by substituting equations (7) into
(6). This new form of energy bands is finally used to compute
the conduction gap of strained junctions.

As a simple example, in the case of ϕ = 0 (armchair
direction), we calculate the conduction gap as follows. First,
equation (6) is rewritten in the form

κ ⃗ = ± ∣ + + ∣ϕ
κ κ κ

=
− −( )E t e t e t e (8)i i i

0 1
2

2
2

3
2y y x

with the vectors ⃗ ≡ ⃗L Lx y x y
0

, , . Using this new form, the energy

Figure 4. Local density of states (left panels) and corresponding transmission coefficient (right panels) for three different wave-vectors ky
obtained in an unstrained/strained graphene junction of σ = 4%, and θ ϕ≡ = 0. On the top is a schematic of graphene bandedges illustrating
the strain-induced shift of Dirac points along the ky-direction.
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gap of strained graphene for a given κy is determined as

κ
κ

= − + +E t t t t t( ) 2 ( ) 4 cos
2

(9)strain
gap

y
y

1 2
2

1 2
2

3

while κE ( )unstrain
gap

y is given by the same formula with
t1 = t2 = t3 ≡ t0. The gap of transmission probability through
the junction is then determined as κE ( )junc

gap
y =

κ κE Emax [ ( ), ( )]unstrain
gap

y strain
gap

y and, finally, the conduction
gap is given by κ=E Emin [ ( )]cond gap junc

gap
y. for κy in the

whole Brillouin zone.
Note that beyond the energy gaps mentioned, transmis-

sion through the junctions also depends on the size of the
transition zone between unstrained and strained graphene
sections. As shown in [42, 43], a short (i.e., smaller than
about 5–6 nm) transition zone can have significant effects on
the transmission probability; i.e., it can be slightly degraded
compared to the case of junctions with a long transition zone.
In this work, we mainly focus on the properties of the con-
duction gap with the assumption that the transition zone is
long and hence the mentioned effect is negligible.

3. Results and discussion

First, we re-examined the formation of the bandgap of gra-
phene under a uniaxial strain. From equation (9), it is shown

that a strain-induced finite-bandgap appears only if
κ >E ( ) 0strain

gap
y for all ky in the first Brillouin zone, i.e.,

∈ − π πk [ , ]y L Ly y
; otherwise, the bandgap remains zero. Hence,

the condition for the bandgap to be finite is either

− > > +t t t t t tOR ,1 2 3 3 1 2

and the corresponding values of the bandgap are

= − − − +( ) ( )E t t t t t t2 OR 2gap 1 2 3 3 1 2

This result was actually reported in [27, 46]. We remind that,
as displayed in figure 2(a), a finite bandgap opens only for
strains larger than ∼23% and the zigzag (not armchair) is the
preferred direction for bandgap opening under a tensile strain
[27]. We extend our investigation to the case of compressive
strain and find [see in figure 2(b)] that (i) the same gap
threshold of σ ≃ 23% is observed but (ii) the preferred
direction to open the gap under a compressive strain is the
armchair, not the zigzag, as is the case of tensile strain. This
implies that the properties of graphene bandstructure at low
energy should be qualitatively the same when applying strains

of σ θ{ , } and of σ θ− + °{ , 90 }. This feature can be under-
stood by considering, for example, strains of σ θ ={ , 0} and

of σ θ− = °{ , 90 }. Indeed, these strains result in the same
qualitative changes on the bond-lengths, i.e., an increased
bond-length r3 and reduced bond-lengths r1,2. However, for
the same strain strength, because of the exponential

Figure 5.Maps of conduction gap in unstrained/strained graphene junctions: tensile (a, c) and compressive cases (b, d). The transport is along

the armchair ϕ = 0 (a, b) and zigzag ϕ = °30 directions (c, d). The strain strength ranges from 0 (center) to 6% (edge of maps) in all cases.
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dependence of hopping energies on the bond-lengths, the
compressive strain generally induces a larger bandgap than the
tensile one, as can be seen when comparing the data displayed
in figures 2(a) and (b). We would like to emphasize again that a
large strain is necessary to open a bandgap in graphene. This
could be an issue for practical applications, compared to the
use of graphene-strained junctions proposed in [43].

We now go to explore the properties of the conduction
gap in graphene-strained junctions. In figure 3, we display the
conductance as a function of energy computed from
equation (5) using the Greenʼs function technique. As dis-
cussed above, a small strain of a few percent (e.g., 4% here)
cannot change the gapless character of graphene, i.e., there is
no gap of conductance in the case of uniformly strained
graphene though Dirac points are displaced as experimentally
demonstrated in [28, 29]. However, similar to the result
reported in [43], a significant conduction-gap of a few hun-
dreds meV can open in the unstrained/strained graphene
junctions. The appearance of this conduction gap, as men-
tioned previously, is due to the strain-induced shift of Dirac
points in a mechanism described as follows. Actually, the
bandedges as a function of wave-vector ky in unstrained and
strained graphene can be illustrated schematically in the top
panel of figure 4. As one can see, the shift of Dirac points in
strained graphene leads to a situation where there is no value
of κy, for which the energy gaps κE ( )unstrain

gap
y and κE ( )strain

gap
y

are simultaneously equal to zero. This means that the trans-
mission probability always shows a finite gap,

κ κ κ=E E E( ) max [ ( ), ( )]junc
gap

y unstrain
gap

y strain
gap

y , for any κy. In
particular, these energy gaps are zero (or small) in the
unstrained (resp. strained) graphene section, but are finite in the
strained (resp. unstrained) one in the vicinity of Dirac point

=k Ky unstrain (resp. Kstrain). Accordingly, as illustrated in the
pictures of local density of states in the left panels of figure 4
and reinforced in the corresponding transmission functions in
the right panels, well-defined gaps κE ( )junc

gap
y of transmission

are still obtained. Far from the values of ky above, κE ( )unstrain
gap

y

and κE ( )strain
gap

y are both finite (e.g., see the LDOS plotted for
=k Ky gap) and hence a finite gap of transmission also occurs.

On this basis, a finite gap of conductance, which is determined
using equation (5), is achieved as shown in figure 3. This gap is
simply given by κ=E Emin [ ( )]cond gap junc

gap
y. for all κy as dis-

cussed in the subsection ‘bandstructure analysis’ and visibly
illustrated in the top panel of figure 4. More important, figure 3
shows that besides the strength of strain, the strain effect is also
strongly dependent on the applied direction. For instance, the
conduction gap takes the values of∼295, 172 and 323 meV for
θ = 0, °30 and °90 , respectively.

Below, we will discuss the properties of the conduction
gap with respect to the strain, its applied direction, and the
direction of transport. Note that due to the lattice symmetry,

the transport directions ϕ and ϕ + °60 are equivalent while

the applied strain of angle θ is identical to that of θ + °180 .

Hence, the data obtained for ϕ ranging from − °30 to °30 and

θ ∈ ° °[0 , 180 ] covers the properties of the conduction gap in
all possibilities.

In figure 5, we present the maps of conduction gap with
respect to the strain and its applied direction in two particular
cases where the transport is either along the armchair (ϕ = 0)

or the zigzag (ϕ = °30 ) directions. Both tensile and com-
pressive strains are considered. Let us first discuss the results
obtained in the armchair case. Figures 5(a) and (b) show that
(i) a large conduction gap of up to ∼500 meV can open with a
strain of 6% and (ii) again the conduction gap is strongly θ-

dependent; in particular, its peaks occur at θ = 0 or °90 while

the gap is zero at θ ≈ °47 and °133 for tensile strain and at

θ ≈ °43 and °137 for compressive strain. In principle, the
conduction gap is larger if the shift of Dirac points in the ky-
axis is larger, as in previous discussion about figures 3 and 4.
We notice that the strain-induced shifts can be different for
the six Dirac points of graphene [47] and the gap is zero
whenever one Dirac point is observed at the same κy in the
two graphene sections. From equation (9), we find that the
Dirac points are determined by the following set of equations:

κ

κ κ κ κ

= ±
− −

=
+

=
−

t t t

t t

t t

t

t t

t

cos
2

1

2

( )
,

cos
2

cos
2

, sin
2

sin
2

,

y

x y x y

3
2

1 2
2

1 2

1 2

3

2 1

3

which simplify into = ±κ
cos

2

1

2

y and, respectively,

Figure 6. Map showing the dependence of conduction gap on the
directions (θ ϕ, ) for σ = 4%. The top is a diagram illustrating the
rotation of Dirac points in the k-space with the change in the
transport direction ϕ.
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= ∓κ
cos ( ) 1

2
x in the unstrained case. Hence, the zero con-

duction gap obtained above satisfies the condition

− −
=

t t t

t t

( )

4

1

4
,3

2
1 2

2

1 2

i.e., there is no shift of Dirac points along the κy-axis.
Additionally, it is shown that the effects of a strain σ θ{ , } are

qualitatively similar to those of a strain σ θ− + °{ , 90 }, i.e.,
the peaks and zero values of conduction gap are obtained at
the same θ in these two situations. To understand this, we
analyze the strain matrix σ θM ( , )s and find that in the case of
small strains studied here, the relationship between the bond
lengths under these two strains is approximately given by

σ θ σ θ σ γ− − + ° ≃ −( )r r r( , ) , 90 (1 ) ,0

which is θ-independent for all C-C bond vectors. It implies
that there is a fixed ratio between the hopping energies

σ θt ( , )i and σ θ− + °t ( , 90 )i and hence a similar shift of Dirac
points happens in these two cases.

Next, we analyze the properties of conduction gap dis-
played in figures 5(c) and (d) where the transport is along the

zigzag direction ϕ = °30 . In fact, the conduction gap in this
case can also reach a value as high as that of the case of ϕ = 0
but has different θ-dependence. In particular, the conduction

gap has peaks at θ ≈ °47 and °133 for tensile strain and at

θ ≈ °43 and °137 for compressive strain, where it is zero in
the case of ϕ = 0. It is also equal to zero at θ = 0 and

θ = °90 where the peaks of the conduction gap occur in the
latter case of ϕ = 0. The relationship between these two
transport directions can be explained as follows. On the one
hand, based on the analysis above for ϕ = 0, we find that for
a given strength of strain, a maximum shift of Dirac points
along the ky-axis corresponds to a minimum shift along the kx-
one and vice versa when varying the strain direction θ. On the
other hand, as schematized in the top of figure 6, the change
in transport direction results in the rotation of the first Bril-

louin zone, i.e., the kx (resp. ky) axis in the case of ϕ = °30 is
identical to the ky (resp. kx) axis in the case of ϕ = 0. These
two features explain essentially the opposite θ-dependence of

Figure 7. Maps of conduction gap obtained in tensile/compressive strained junctions. The transport along the armchair/zigzag directions is
considered in (a, b)/(c, d), respectively. The strains σ = −2%c and σ = 2%t are applied in (a, c) while σ = −1%c and σ = 3%t in (b, d).

7

Semicond. Sci. Technol. 29 (2014) 115024 M C Nguyen et al



conduction gap for ϕ = °30 , compared to the case of ϕ = 0,
as mentioned. Again, we found the same qualitative behavior
of the conduction gap when applying the strains of σ θ{ , } and

σ θ− + °{ , 90 }.
We now investigate the conduction gap with respect to

different transport directions ϕ. We display a (θ ϕ, )-map of
conduction gap for σ = 4% in figure 6 together with an
additional diagram, in the top, illustrating the rotation of
Dirac points in the k-space with change in transport direction.
It is clearly shown that (i) a similar scale of conduction gap is
obtained for all different transport directions, (ii) there is a
smooth and continuous shift of θ−Econd gap. behavior when
varying ϕ, and (iii) the same behavior of Econd gap. is also
observed when comparing the two transport directions of ϕ

and ϕ + °30 , similar to the comparison for the case of ϕ = °0

and °30 . The data plotted in figure 6 additionally shows that
Econd gap. takes the same value in both cases of ϕ θ{ , } and

ϕ θ− −{ , } with a remark that the strains of θ− and θ° −180
are identical. Moreover, the relationship between the values
of θ and ϕ at peak or zero conduction gaps is almost linear.
For instance, the relationship for conduction gap peaks is

approximately given by θ θ η ϕ= −A s . For tensile strains, ηs
takes the values of ∼1.5667 and 1.4333 for two peaks at

θ = 0A and °90 , respectively. On the opposite, it is about

1.4333 and 1.5667 for θ = 0A and °90 , respectively, in the
case of compressive strains. All these features are essentially
consequences of the rotation of Dirac points in the k-space
with respect to the transport direction ϕ as illustrated in the
diagram on the top of figure 6 and of the lattice symmetry of
graphene.

As an alternative, we investigate another kind of strained
junctions based on compressive and tensile-strained graphene
sheets. The idea is that in this type of strained junction, the
shifts of the Dirac points are different in two graphene
sections of different strains, which offers the possibility of
using smaller strains to achieve a similar conduction gap,
compared to the case of unstrained/strained junctions. In
figure 7, we display the maps of the conduction gap with
respect to the directions of compressive (θc) and tensile (θt)
strains in two cases of transport direction: ϕ = 0 (armchair)

and °30 (zigzag) for given strain strengths. Indeed, as seen in
figures 7(a) and (b), with smaller strains
σ σ = −{ , } { 2%, 2%}c t or −{ 1%, 3%}, similar conduction
gap of about 310 meV can be achieved while it requires a
strain of 4% in the unstrained/strained junctions studied
above. However, since the shift of the Dirac points is strongly
dependent on the direction of applied strains and the transport
direction, the properties of conduction gap in this case are
more complicated. In particular, our calculations show that
the preferred transport directions to achieve large conduction
gaps are close to the armchair one. Otherwise, the conduction

gap is generally smaller, similarly to the data for ϕ = °30
compared to ϕ = 0, as displayed in figure 7. Additionally, the
preferred directions of applied strains for ϕ = 0 are

θ θ= = 0c t or °90 .
In addition to the uniaxial strains studied above, we

notice that generally, the conduction gap can occur in any
strained junction and, of course, is strongly dependent on the
type of strain. As an illustration, we display in figure 8 the
maps showing the dependence of the conduction gap on the
strain and the transport direction for two strain models: pure
shear strain [figure 8(a)] and combined uniaxial-shear strain
[figure 8(b)]. The strain tensor has the form [26]

σ δ δ δ δ= +M ( )ij
shear

ix jy iy jx for shear strains and

σ δ δ δ δ δ δ= + +M ( )ij
comb

ix jx ix jy iy jx for combined strains. It
is shown that compared to uniaxial strain cases, (i) it requires
smaller shear (or combined) strains to achieve the same
conduction gap and (ii) its dependence on the transport
direction is very different. The former is consistent with the
fact that the threshold deformation required to achieve a finite
bandgap in graphene is lower for shear/combined strains than
for a uniaxial strain [26, 27], because the similar difference
between the three nearest −C C bond lengths (r1,2,3) can be
obtained with weaker shear/combined strains. Regarding the
transport-direction dependence, the shear strain gives a peak

conduction gap at ϕ ≃ ± °30 (zigzag) and a zero gap at ϕ ≃ 0
(armchair directions). In contrast, for a uniaxial strain with

Figure 8. Maps showing the conduction gap as a function of shear
strain (a) and combined strain (b) with different transport
directions ϕ.
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θ = 0, the conduction gap is zero and maximum for the
zigzag and armchair transport directions, respectively. In the

case of combined strains, it has a peak at ϕ ≃ − °20 and a zero

value at ϕ ≃ °10 . We would like to emphasize an additional
point that the ‘bandstructure analysis’ used in this work is a
simple and efficient way to calculate the conduction gap in
these types of graphene junctions with different strain models.

Finally, we have one remark that, based on the analogy
between strain and magnetic field for generating the shift of
Dirac points in graphene, one might expect to achieve the
same effects by creating a junction of graphene sections
having different vector potentials, e.g., using a ferromagnetic
stripe on top of graphene. However, previous studies in the
literature have shown that to obtain the same effects as with a
strain of a few percent, very large magnetic fields, i.e., from a
few tens to hundreds Teslas [36, 48, 49], are required, making
it very difficult to be realized in practice. Therefore, the strain
could be a more realistic technique to achieve a finite con-
duction gap in this type of junctions.

4. Conclusion

Based on tight-binding calculations, we have investigated the
strain effects on the transport properties of graphene-strained
junctions and discussed systematically the possibility of
achieving a large conduction gap with respect to the strain
strength, its applied direction and the transport direction. It
has been shown that due to the strain-induced displacement of
Dirac cones away from the K-point, a finite conduction gap
higher than 500 meV can be achieved for a uniaxial strain of
only 6%. However, since it is essentially due to the shift of
Dirac points along the ky-axis, this conduction gap is strongly
dependent not only on the strain strength, but also on the
direction of applied strain and the transport direction. As an
important result of the work, a full picture of these properties
of the conduction gap has been presented and explained. The
study could be a useful guide and provides an efficient cal-
culation method for the investigation of graphene-strained
junctions in electronic applications, e.g., as recently proposed
in [43], and for other applications as strain sensors.
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