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Abstract
An alternative model of Gaussian-type potential is suggested, which allows us to describe the
transport properties of the locally gated graphene bipolar junctions in all possible charge
density regimes, including a smooth transition between the regimes. Using this model we
systematically study the transmission probability, the resistances, the current–voltage
characteristics, and the shot noise for ballistic graphene bipolar junctions of different top gate
lengths under largely varying gate voltages. Obtained results on the one hand show
multifarious manifestations of the Klein tunneling and the interference effects, and on the
other hand describe well typical experimental data on the junction resistances.

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene, a single layer hexagonal lattice of carbon atoms [1],
has emerged as a fascinating material in terms of both
fundamental studies [2–4] and potential applications in
electronic devices [5]. The linear energy spectrum with zero
bandgap and the chirality of wavefunctions are the two most
unusual characteristics of carriers in graphene that give rise
to remarkable transport phenomena including backscattering
suppression [6], Klein tunneling [7], anomalous quantum
Hall effect [8, 9], or Veselago lensing [10]. In particular,
the peculiar band structure of graphene makes possible
the electrostatic control of carrier type, electron-like or
hole-like, and carrier density across the neutrality point,
obviating conventional semiconductor doping, for instance
via ion implantation. Technologically, graphene has then
an advantage in fabricating p–n junctions and then bipolar
devices, using only local gates. Graphene p–n junctions not
only are basic building blocks for more complex devices,
but also have already been proposed in order to investigate
fundamental properties of graphene itself [11, 12].

Experimentally, the locally gated graphene heterojunc-
tions have been developed by several groups [11–18]. In
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general, to create a graphene bipolar junction (GBJ) one
implements a design with two electrostatic gates, a global
back gate and a local top gate (see figure 1(a)). A voltage Vb
applied to the back gate tunes the carrier type and the carrier
density in the bulk of graphene sheet, whereas a voltage Vt
applied to the top gate tunes the carrier type and the carrier
density in only some region below this gate. Thus, by varying
independently the gate voltages, Vb and Vt, one can create
graphene bipolar heterojunctions in all possible charge density
regimes: p–n–p, n–p–n, p–p′–p, or n–n′–n, where, as usual, n
or p refers to electrons or holes, respectively (see figure 1(b)).

Ozyilmaz et al studied the quantum Hall transport
in graphene n–p–n junctions and observed a series of
fractional quantum Hall plateaus as the local charge density
varies in the p and n regions [11]. Huard et al measured
the resistance (R) across GBJs and reported a noticeable
asymmetry of the R versus Vt curves with respect to the
maxima. Using a suspended ‘air-bridge’ top gate to avoid
a decrease of the carrier mobility in the region under this
gate, Gorbachev et al were able to fabricate ballistic graphene
p–n–p junctions which show a reproducible oscillation of the
junction resistance as the top gate voltage Vt varies [15]. Liu
et al observed the Coulomb blockade in graphene nanoribbon
based bipolar junctions, which indicates an emergence of the
single electron transistors [17].
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Figure 1. (a) Scheme of GBJs under study. (b) Diagram of junction charge density regimes (n for electron and p for hole). (c) Three
potential barrier models in comparison: rectangular (dash–dotted line), trapezoidal (dotted line), and Gaussian (solid line). (d) Several
potential profiles of equation (3): L = 20 nm,Vb = 40 V, and Vt (from top) = −4, −3, −2, and 0.1 V. (Other parameters are given in the
text.)

Intriguing phenomena observed as well as potential
applications of ballistic graphene junctions, e.g. filter
circuits [7], graphene lenses [10], or single electron
devices [17], have raised much interest in the ballistic regime
of transport. The fact that the carrier mean free path in
graphene may be as large as l ∼ 1 µm [1, 3, 19], while
the typical size of graphene based field effect transistors is
only ∼0.25–0.5 µm [20], provides the graphene for the best
material where the ballistic transport could be realized.

Theoretically, several potential models have been
proposed to describe the ballistic transport across locally
gated GBJs. In the simplest model of rectangular potential
barriers [7, 21], the two characterizing parameters are the
barrier width measuring the top gate length (L) and the barrier
height turned by the two gate voltages (see figure 1(c)). Within
the framework of this model the transmission probability
across the junction can be exactly derived [7]:

T (E, θ,L) = (cos2θ cos2φ)([cos(Lqx) cos θ cosφ]2

+ sin2(Lqx)[1− ss′ sinφ sin θ ]2)−1. (1)

Hereafter, the following symbols are addressed: E the incident
energy, θ the incident angle, ky = kF sin θ, φ = arctan(ky/qx),

qx =

√
[(E − U2)/h̄vF]

2 − k2
y , kF the Fermi wavenumber,

vF ≈ 106 m s−1 the Fermi velocity, s = sign(E − U1), s′ =
sign(E − U2),U1(2)(n1(2)) = −sign(n1(2))h̄vF

√
π |n1(2)|, n1

the average charge density induced by the back gate voltage
alone in the whole bulk of graphene sheet, and n2 the average
charge density induced by both the back gate and the top gate

voltages inside the barrier region only. For a given junction,
the densities n1 and n2 can be defined as [8, 13]

n1 = Cb(Vb − V(0)b )/e and

n2 = n1 + Ct(Vt − V(0)t )/e,
(2)

where e the elementary charge, Cb(t) the back (top) gate
capacitance per area, and V(0)b(t) the back (top) gate voltage
required to attain the zero value of the average charge density
induced by the back (top) gate. The transmission probability
of equation (1) will be discussed in figures 2–4.

Another model used to describe GBJs is the trapezoidal
potential barrier [13, 22, 23], taking into account the fact
that the transition regions should extend for some finite
range (the width D in figure 1(c)). In this model, due to the
uniformity of the electric field in the transition regions, the
Dirac equation has even in these regions an exact solution
in terms of confluent hypergeometric functions [24], and
therefore the transmission probability across the whole barrier
can be in principle calculated exactly. In this way, Sonin
calculated the conductance and the Fano factor for trapezoidal
potential barriers of different values of D [22]. However,
this study does not identify the physical nature of barrier
parameters, including the source of the finite width D of
transition regions, with respect to the real junctions. Low
et al [23] tried to identify D as the typical width of the uniform
electric field transition region which was calculated by Zhang
and Fogler [25], taking into account the non-linear screening
effect. With this identity, the width D is indeed expressed
in terms of the junction parameters and the charge densities
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Figure 2. Polar graphs depicting T (θ) for GBJs in rectangular potential model (dashed blue curves) and Gaussian-type potential model
(solid red curves): the outmost semicircle corresponds to T = 1 and the center to T = 0 with grid spacing of 0.2; angles between −π/2 and
π/2 are shown and the angular spacing is π/6. To see the role of each parameter, T (θ)-graphs are shown for various values of parameters
[L (nm),E (meV),Vb (V),Vt (V)]: (a) [25, 0, 60,−12]; (b) [25, 50, 60,−12], (c) [50, 50, 60,−12]; (d) [25, 0, 40,−6];
(e) [25, 50, 40,−6]; (f) [50, 0, 40,−6]. Note: due to the limiting scale of the figures some thin resonant peaks in the solid curves might be
partly invisible; in reality, all the peaks reach the outmost semicircle (with T = 1).

n1 and n2. Unfortunately, the expression D(n1, n2) obtained
in [25] becomes invalid at small values of n1 or n2, that leads
to a divergence of resistances at the gate voltages, where
a change in the junction charge density regime occurs (see
figure 5(a) in [23]).

Recently, using the tight-binding model based quantum
transport simulation [26], Liu and Richter calculated the
GBJ conductance G as a function of the top gate voltage Vt
and claimed a qualitative agreement between the calculated
G(Vt)-dependences and the experimental data reported
in [18].

For a smooth uni-junction (i.e. n–p junction) with kFD >

1, the transmission probability was shown by Cheianov and
Fal’ko [27] to be T = exp[−πkFD sin2θ ]. This T -expression
may be directly used to evaluate the resistance of GBJs if the
top gate length L is larger than the carrier elastic mean free
path l: L > l. In this case, after crossing the first transition
region carriers lose all momentum information before entering
the second one, and therefore, the total resistance of a GBJ
can be modeled by the two isolated uni-junction (namely
n–p and p–n) resistances in series. However, for the ballistic

GBJs of interest, when L < l, the device resistance should
be consistently calculated for the whole structure, taking into
account all possible reflections at transition regions as well as
their interferences.

The aim of this paper is to re-examine the ballistic
transport through locally gated GBJs, using an alternative
model of a Gaussian-type potential barrier. This potential
model has certain advantages: (i) it better reflects the potential
profile in the real GBJs [4, 15], compared to the rectangular or
the trapezoidal potential barrier model; (ii) for a given GBJ,
the modeled potential barrier profile is entirely determined
by the two gate voltages Vb and Vt, that provides a direct
comparison of calculating transport properties to experimental
data; and (iii) a continuous variation of the Gaussian-type
potential as a function of space variables allows us to calculate
the transport properties of heterojunctions in all possible
charge density regimes, including a smooth transition between
the regimes. In particular, using this potential model it is rather
simple to calculate all transport characteristics of the GBJs
under study.

3
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Figure 3. Transmission probabilities T for the same GBJs as discussed in figure 2 but plotted as a function of the incident energy E at
various incident angles θ : dashed blue curves—T (E) in rectangular potential model; solid red curves—Gaussian-type potential model.
(a)–(f) Various values of the parameters [L (nm), θ,Vb (V),Vt (V)]: (a) [25, π/6, 60,−12]; (b) [25, π/18, 60,−12], (c) [25, π/6, 40,−6];
(d) [25, π/18, 40,−6]; (e) [50, π/6, 40,−6]; (f) [50, π/18, 40,−6]. Note: for the same reason of limiting figure scale as in figure 2, some
thin resonant peaks in this figure might be partly invisible; in reality, all peaks should go to one.

Figure 4. Transmission probability is plotted versus the length L for
two GBJs of [Vb, Vt] = [60,−12] V (a) and [40,−6] V (b). In both
blocks E = 0 and θ = π/18; dashed blue lines—T (L) in
rectangular potential model; solid red lines—Gaussian-type
potential model.

Based on the potential model suggested, we system-
atically examined the zero-temperature ballistic transport
properties of GBJs, using the T-matrix approach [29, 30]
first to calculate the transmission probability, and then the

Landauer formalism [31] to calculate the device resistance,
the current and the shot noise. Obtained transmission
probabilities are discussed in comparison with those of
equation (1) for the rectangular barrier model to demonstrate
the role of the Klein tunneling and the interference
effects. Calculated resistances R describe well the typical
experimental observations such as a reproducible oscillation
of R against Vt or an asymmetry in the R(Vt)-curves with
respect to the maxima. An associated oscillation observed in
the zero-bias shot noise with respect to Vt is also in good
agreement with experiments. The bias voltage modifies the
potential barrier, leading to the current–voltage characteristics
with a slightly negative differential resistance region and to
the shot noise which is considerably suppressed in the low
bias region and becomes fluctuating at higher biases.

This paper is organized as follows. Section 2 describes
the model and calculation methods. Section 3 is devoted
to present obtained results for the transmission probability.
Section 4 is focused on the junction resistance. In section 5,
the current–voltage (I–V) characteristics and the shot noise
are addressed. Section 6 is a summary including an additional
brief discussion.

2. Model and calculating method

By solving the two-dimensional Laplace equation with the
potentials of the two gates as boundary conditions, Gorbachev
et al have calculated the gates’ induced potential profile along
p–n–p junctions (x direction in figure 1). Calculations carried
out at different gate voltages Vb and Vt show clearly an
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inverse Gaussian-type shape of potential profile (see figures
3(b)–(d) in [15]). The Gaussian-type potential profile was
further reported by Rossi et al in [28], where the ground
state carrier density and the corresponding potential along the
device have been calculated using the Thomas–Fermi–Dirac
approximation. Liu and Richter also reported a similar
potential profile in their quantum transport simulations [26].
These studies brought about the present idea of suggesting the
Gaussian-type potential barrier model to describe transport
properties in GBJs.

Structures under study are schematically drawn in
figure 1(a), where L is the top gate length and the x-axis is
directed along the graphene stripe with the origin (x = 0)
located at the middle of the top gate (see figure 1(c)). Along
the (unshown) transverse y-direction the width W of the stripe
(and the gates) is assumed to be large compared to the top
gate length. The voltages Vb and Vt applied respectively to the
back gate and the top gate induce in the stripe a total potential
which is here suggested to (i) be constant along the y-direction
and (ii) vary along the x-direction as

U(x) = U21 · e−x2/αL2
+ U1, (3)

where U21 = U2 − U1 with U1(2) defined in the paragraph
following equation (1) and α is a constant of the order of
unity, which is perhaps dependent on the top gate length L.
Note that the potentials U1(2) are entirely determined by the
charge densities n1(2), which are in turn entirely determined
by the gate voltages Vb(t), given structural parameters of the
junction (i.e. the width W, the length L, the capacitances Ct(b)

and the voltages V(0)t(b)).
Obviously, depending on the sign of the potential factor

U21, the suggested potential barrier of equation (3) has either
a Gaussian-type or an inverse Gaussian-type shape with the
maximum or the minimum at x = 0, where the potential is just
equal to U2. This means the quantity n2 defined in equation (2)
is just the charge density at x = 0. Beyond this point in both
directions, the charge density varies with x in a way consistent
with the potential profile. In far regions, |x| � L, the potential
of equation (3) reduces to U1, implying that the charge density
in the bulk graphene stripe is just n1 defined in equation (2).
Thus, in contrast to the rectangular or the trapezoidal potential
barriers, the present Gaussian-type potential model describes
a continuous variation of the charge density between the bulk
value n1 at a distance and the value n2 in the center of the
device. In addition, for a given junction these densities n1 and
n2 are entirely determined by the gate voltages, as can be seen
in the relations of equation (2).

Concerning the constant α in the potential of equation (3),
a simple electrostatic estimation can show a dependence of α
on the top gate length L. So, presumably, α is an adjustable
parameter. In calculations discussed below, for simplicity, α
is taken to be 1 (the length L is assumed to be much larger
than the inter-carbon distance in the graphene lattice).

As a demonstration, figure 1(d) presents several potential
profiles U(x) of equation (3) for the GBJs with the same L =
20 nm and the same Vb = 40 V, but under different top gate
voltages Vt (given in the figure). Hereafter, for definition, we
borrow from [13] the following values of device parameters:

Cb = 14 nF cm−2, Ct = 1.0 × 102 nF cm−2, V(0)b = 31.5 V,

and V(0)t =−1.4 V. This figure demonstrates how the junction
charge density regime could be changed as only the top gate
voltage Vt varies. It resembles well figures 3(b)–(d) in [15],
figure 1(b) in [28], or figure 1(c) in [26].

By varying both the gate voltages, Vb and Vt,
independently, the relations of equation (2) draw a full
diagram of junction charge density regimes as can be seen in
figure 1(b). Again, this figure resembles figure 3(b) in [13] or
figure 1(d) in [15].

Actually, within the present model, to study transport
characteristics for a given GBJ we have first to solve
the Dirac equation for the Hamiltonian with the potential
defined in equation (3). Here, for simplicity, we assume that
(i) potential magnitudes |U1(2)| should be much smaller than
the bandwidth of the bare graphene π -band, so all that we deal
with is just associated with the first π -band; (ii) typical length
scales of the potential of equation (3), including the top gate
length, should be much larger than the inter-carbon distance
in the graphene lattice, so the intervalley scatterings between
the Dirac points at K and K′ can be omitted; and (iii) the width
W of the graphene stripe should be much larger than the top
gate length L, so all the edge-related effects can be neglected.
Under these assumptions the low energy properties of charge
carriers in the structure of interest can be well described by
the massless Dirac-like Hamiltonian:

H = −h̄vF Eσ E∇ + U(x)I, (4)

where Eσ = (σx, σy) are Pauli matrices, I is the identity matrix,
and U(x) is the potential defined in equation (3).

The Hamiltonian of equations (4) and (3) could not
be solved analytically. However, as discussed in detail
in [32], the T-matrix approach, well known in semiconductor
physics [29], seems to be of high effectiveness for solving
such a Hamiltonian with a smooth one-dimensional potential
U(x). Indeed, in principle, any smooth one-dimensional
potential can be approximately treated as a series of many
step potentials so that within each step the potential can
be considered constant. The overall T-matrix to be found
is then simply given by multiplying the partial T-matrices
for all these step potentials. On the other hand, for each
step potential the partial T-matrix can be obtained from the
solutions of the Hamiltonian of equation (4) on the left and
the right sides (where the potential U is considered constant)
by requiring an appropriate condition of continuity at the
step interface. The calculation procedure is the same as that
in semiconductor structures [29], but the continuity is here
required only for the wavefunctions (by matching up the
corresponding amplitudes). Fortunately, such a procedure of
constructing the overall T-matrix for the potential U(x) of
interest can be easily realized on a computer without the need
of explicitly writing down solutions of the Hamiltonian (4)
for each step. Certainly, as a rule, to ensure the accuracy of
the result obtained the convergence of the numerical solution
should be carefully checked in each calculation.

Using the obtained overall T-matrix, the transmission
probability T through the studied junction can be calculated
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as a function of the incident energy E and the incident angle
θ [32]:

T (E, θ) =
{

1− |T21|
2/|T22|

2, if λLλR > 0

1− |T22|
2/|T21|

2, otherwise,
(5)

where Tij, (i, j = 1, 2) are elements of the T-matrix, T =
(T11T12;T21T22), λL(R) = sign(E − UL(R)) with UL(R) the
potential in the left (right) lead.

Once the transmission probability T of equation (5)
is known, one can within the framework of the Landauer
formalism calculate the conductance [32]

G =
ge2W

vFh2 |µ0 − U1|

∫ π/2

−π/2
dθT (θ) cos θ (6)

and the zero-bias Fano factor [31]

F =
∑

n Tn(1− Tn)∑
n Tn

. (7)

Here, the Fano factor F is as usual defined as the ratio of the
actual shot noise power S and the Poissonian noise SP that
would be measured if the system produced noise due to single
independent carriers. The sums in equation (7) are taken over
all conduction channels. This expression of the zero-bias Fano
factor F is most valid in the linear regime.

Beyond the linear regime, the bias voltage Vsd produces
a considerable x-dependent addition to the potential of
equation (3) and therefore modifies the profile of this
potential. Nevertheless, with the same T-matrix approach as
described above, the transmission probability can be equally
calculated for such modified potential barriers, taking into
account the bias voltage effects. Thus, for a given bias Vsd,
we first calculate T (E, θ), then within the framework of the
Landauer formalism calculate the drain current [32]

I =
geW

vFh2

∫ µL

µR

dE|E − U1|

∫ π/2

−π/2
dθ T (E, θ) cos θ, (8)

and the bias-dependent shot noise power

S = 2
geW

vFh2

∫ µL

µR

dE|E − U1|

∫ π/2

−π/2
dθ T (E, θ)

× [1− T (E, θ)] cos θ. (9)

This noise power then determines the bias-dependent Fano
factor F = S/SP = S/2eĪ, where Ī the average current [31].
Thus, in this way, the current–voltage I(Vsd)- and the Fano
factor–voltage F(Vsd)-characteristics can be produced.

It should be here noted that in equations (6)–(9) g = 4
is the degree of degeneracy, W is the stripe width, and µL(R)
is the Fermi energy at the left (right) lead. At equilibrium,
the potentials in the left and right regions are of equal height
and µL = µR ≡ µ0 (see equation (6)). A bias voltage Vsd
causes a difference between µL and µR, |µL − µR| = eVsd,
and therefore induces a current.

Thus, given GBJ, i.e. given stripe width W, top gate
length L, and gate voltages Vb(t), the calculation procedure
is as follows: (i) determine the potential of equation (3);
(ii) solve the Hamiltonian of equation (4) using the T-matrix

approach to calculate the transmission probability of equa-
tion (5); and (iii) calculate the conductance of equation (6)
and the zero-bias Fano factor of equation (7), using the
Landauer formulas. Further, to study the current–voltage and
the Fano factor–voltage characteristics, at each bias Vsd we
have first to modify the potential barrier taking into account
the bias effect, then calculate the transmission probability
T (E, θ) in the same way as in the case of zero bias, and then
calculate the current of equation (8) and the shot noise power
of equation (9). Calculations are carried out for the n–p–n
junctions in the ballistic regime. In calculations, the values
of Cb(t) and V(0)b(t) are as mentioned above borrowed from the
experiment [13], the stripe width W is given to be large and
fixed (W = 3 µm), and the gate length L is chosen between
20 and 100 nm, while the gate voltages Vb(t) greatly vary.

3. Transmission: Klein tunneling and interference
effects

Klein tunneling is a relativistic effect and has never been
observed experimentally in particle, nuclear, or astro-physics.
The fact that charge carriers in graphene are massless
relativistic particles provides a possibility to test this effect in
simple condensed-matter experiments. Following Katsnelson
et al [7], a unique manifestation of Klein tunneling can be
found in the incident-angle dependence of the transmission
probability across a potential barrier created on a graphene
sheet. We present such T (θ)-dependences in figure 2 for the
GBJs modeled by either rectangular potentials (dashed blue
lines) or Gaussian-type potentials of equation (3) (solid red
lines). The graphs in this figures are arranged in the following
way: three graphs in the same line ((a)–(c) or (d)–(f)) are
associated with identical gate voltages Vb and Vt, but with
different lengths L and/or incident energies E, while the two
graphs in the same column are associated with the same L
and E, but with different gate voltages. Thus, to see how
some factor does affect the transmission probability we should
compare the appropriate adjacent graphs.

Obviously, in any graph of figure 2 both solid and dashed
lines show a complete transparency of barriers, T = 1, for
the normal incidence (θ → 0). This is a typical manifestation
of Klein tunneling, regardless of the barrier shape as well
as the barrier size. Nevertheless, as can be seen in each of
these graphs, the highly transmitted angular region for the
Gaussian-type potential (solid lines) is always considerably
narrower than that for the corresponding rectangular one
(dashed lines). The root cause of such a difference in the
highly transmitted angular region between the two models is
the smoothness of the Gaussian-type potential, which as well
known strongly suppresses the Klein tunneling. On the other
hand, since the smoothness of the potential of equation (3)
mutually depends on the junction parameters (i.e. L,Vb, and
Vt, see figure 1(d)), the relative Klein tunneling suppression
of the two models should also depend on these parameters
(compare the graphs in figure 2 to each other).

Another common feature observed in all the graphs in
figure 2 is the symmetry of T with respect to the sign
of θ, T (θ) = T (−θ). Beyond the central region of perfect
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transmission there are often resonances. Figure 2 also shows
that these resonances are much narrower in the case of
Gaussian-type potentials compared to the case of rectangular
ones (see the note in the figure). Again, the root of this
difference is the smoothness of the Gaussian-type potentials.

Since the only parameters distinguishing from each other
the two graphs in the same column in figure 2 are the gate
voltages ((Vb,Vt) = (60,−12)V for all graphs in the first line
and (40,−6) V for the second line), comparing the two graphs
in each column, (a)–(d), (b)–(e) or (c)–(f), shows how the
incident-angular dependence of the transmission probability
depends on the gate voltages. On the other hand, comparing
the three graphs in each line to each other reveals the influence
of the other two factors, the incident energy or the top gate
length, on the θ -dependence of the tunneling process.

To see in detail the incident energy dependence of
the transmission probability, we show in figure 3 the
T (E)-functions calculated for the same GBJs as those in
figure 2 and in the two models, rectangular potential (dashed
blue lines) and Gaussian-type potential (solid red lines). The
panels in this figure are arranged in the following way: (i) the
two panels in the same line are associated with the same
junction (i.e. the same L,Vb, and Vt), but with different
incident angles (θ = π/6 for the three panels in the left
column and θ = π/18 for the right column), and (ii) in each
column, the only difference between the top and the middle
panel is the gate voltages, while that between the middle and
the bottom panel is the top gate length.

The strong oscillation is the most impressive feature of all
the T (E)-curves shown in figure 3 for both rectangular and
Gaussian-type potential models. Actually, this oscillation is
the typical resonant picture originating from the interference
effect that makes the potential barrier perfectly transparent at
certain energies. Actually, figure 3 also shows an essential
difference in the resonant picture between the two models
considered. In reality, the distribution of resonant peaks
in the transmission probability reflects the distribution of
resonant levels inside the studied potential well/barrier. In
the range of parameters examined in figure 3 the level
distributions in rectangular potential barriers are more or less
symmetric, and therefore the resonant pictures are almost
symmetric, as can be seen in all panels in figure 3. In contrast,
for the Gaussian-type potential barriers the resonant level
distributions are strongly asymmetric. In the case of the
n–p–n junctions studied here the resonant levels are much
denser in the low energy region and therefore the resonant
peaks in this region are highly dense, as shown by the
solid lines in figure 3. Certainly, an inverse resonant picture
should be observed in the case of p–n–p junctions, where the
resonant peaks should be denser in the high energy region.
Concerning the oscillation magnitude, due to a smoothness
of the Gaussian-type potential in any graph in figure 3 the
minima in the solid curve are always much deeper than those
in the dashed one.

As already seen in figure 2, there is a close correlation
between the two variables θ and E in affecting the
transmission probability T . Such a correlation becomes
clearer in comparing the corresponding panels in the two

columns in figure 3. A decrease from θ = π/6 (outside the
highly transmitted angular regions in figure 2) in the left
column to θ = π/18 (inside the highly transmitted angular
regions in figure 2) in the right column induces a remarkable
change in the T (E)-graphs (note the difference in energy scale
for the graphs in the two columns.) In particular, there is
always in the left column a large incident energy gap where
T = 0, whereas in the right column T is practically non-zero
in the whole range of energy under study.

The only length scale in both models is the ‘top gate
length’ L, which plays a key role in determining the resonant
picture. Indeed, the only change of L from 25 to 50 nm results
in a much higher frequency in the T versus E oscillations, as
can be seen by comparing the middle panel with the bottom
one in either column in figure 3, i.e. (c)–(e) or (d)–(f).

To learn more about the role of the length L in forming
the tunneling process, we calculated T as a function of L
and present in figure 4 the results obtained in two cases:
(a) and (b), with the same gate voltages and incident angle
as those in figures 3(b) and (d), respectively. Note that in
contrast to figure 3 in [7], where the normally incident
transport was examined, figure 4 is depicted in the case
of θ = π/18. In this case, equation (1) for rectangular
potential barriers gives a sinusoidal dependence of T on L
that is described by the dashed lines in figure 4. For the
Gaussian-type potential barriers, as shown by the solid lines
in figure 4, the T (L)-curves are no longer exactly sinusoidal,
though they still show an oscillation rather regular in L.
In the ballistic regime, the only factor that could make T
oscillate with respect to L is the reflection and interference
processes. So, the T (L)-oscillations observed in figure 4
could be seen as one more manifestation of the reflection
and interference processes occurring inside potential barriers.
Certainly, since the detailed shape of the potential barrier of
equation (3) is also sensitive to the gate voltages, the reflection
and interference processes should depend on these parameters
too. This explains the observed difference between the two
solid lines in figures 4(a) and (b). Besides, in consistency with
the T -oscillation shown in figure 3, in both figures 4(a) and
(b) the solid line always oscillates more strongly and more
frequently compared to the dashed one in the same figure.

The properties of the transmission probability stated
above should be manifested in the fundamental transport
characteristics such as the resistance R = 1/G, the current I
and the Fano factor F .

4. Resistances: theory versus experiments

A reproducible oscillation of the resistance R as a function of
the top gate voltage Vt and an asymmetry of the R(Vt)-curve
with respect to the maximum at the voltage Vt corresponding
to n2 ≈ 0 are the two most typical properties of transport
across GBJs reported in different experiments [12, 13, 15, 18].

Figure 5(a) presents calculated resistances R = 1/G of
equation (6) plotted against the top gate voltage Vt at different
back gate voltages: Vb = 40 V (dash–dotted line), 60 V (solid
line), and 80 V (dashed line). Experimentally, the back gate
voltage Vb should be set first to produce the carrier type and
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Figure 5. Resistances R (a), odd resistance 2Rodd (b), and zero-bias
Fano factors F (c) versus Vt for three cases with Vb = 40 V
(dash–dotted red lines), 60 V (solid blue lines), and 80 V (dashed
green lines). Arrows indicate the transition top gate voltages V(c)t
where the transition between n–p–n and n–n′–n regimes occurs
(V(c)t = −2.59 V, −5.39 V and −8.19 V for Vb = 40 V, 60 V and
80 V, respectively).

density n1 in the graphene stripe. Then, the top gate can be
set to create a bipolar junction and, further, can be varied to
change the junction regime. For all the voltages Vb chosen in
figure 5, the density n1 is always positive, implying that the
graphene stripes are always set in the n-regime. The voltage
Vt is at the beginning set to a large negative value to produce a
n–p–n junction with high potential U2 (or large |n2|, n2 < 0).
On increasing Vt in the positive direction, the density n2 is
gradually reduced in value, then vanishes at some transition
top gate voltage Vt = V(c)t , where a change from the n–p–n
to n–n′–n regime occurs. For the samples with Vb = 40 V,
60 V, and 80 V examined in figure 5, equation (2) gives V(c)t =

−2.59 V, −5.39 V, and −8.19 V, respectively (indicated by
arrows in the figure)

As is evident in figure 5(a), for a given Vb, the resistance
R strongly oscillates with a slightly increasing average value
as Vt increases in the region of Vt < V(c)t , when n1n2 < 0,
i.e. when the studied junction remains in the n–p–n regime.

Crossing the last maximum at Vt ≈ V(c)t , the junction enters
the n–n′–n regime, where the structure becomes much more
transparent and consequently the resistance experiences a
sharp reduction at Vt > V(c)t . In the range of Vb under study
figure 5(a) also shows that an increase of Vb leads to a
decrease of not only the transition voltage V(c)t , but also
the average resistance in both regions, Vt < V(c)t and Vt >

V(c)t . On the whole, the calculated R(Vt)-dependences shown
figure 5(a) describe quite well the experimental data reported
in [12, 13, 15, 18].

Observed oscillations of R versus Vt can arise from the
oscillations of the transmission probability caused by the
inside-barrier interference of chiral waves [7]. It should be
additionally noted that, within the Gaussian-type potential
model, even if the gate length L is fixed (L = 25 nm for
all curves in figure 5), the potential profile of equation (3)
sensitively varies with the gate voltages. Such a potential
profile variation induces a corresponding variation in the
interference process, resulting in the observed differences in
the oscillation manner (magnitude and ‘period’) between the
curves in figure 5(a).

In each curve in figure 5(a), the last maximum located
at Vt ≈ V(c)t separates the two junction regimes: the n–p–n
on the left, where n1 · n2 < 0, and the n–n′–n on the right,
where n1 · n2 > 0. The fact that for given absolute values
of the densities n1 and n2 the resistance is always higher if
n1 · n2 < 0 than if n1 · n2 > 0 makes any of the R(Vt)-curves
in figure 5(a) asymmetric with respect to the last maximum.
Such an asymmetry is seen as a typical character of GBJ
resistances stated in a number of experiments [12, 13, 15].

In order to highlight the effect of the n–p/p–n interfaces,
Huard et al specially extracted the odd part of the junction
resistance, Rodd, which depends on the sign of the carrier
density n2:

2Rodd(n1, n2) = R(n1, n2)− R(n1,−n2). (10)

In figure 5(b) the calculated ‘odd resistance’ 2Rodd of
equation (10) is shown as a function of Vt for the same
samples as in figure 5(a). Note from equation (10) that
Rodd(n1, n2) = −Rodd(n1,−n2), so all the 2Rodd(Vt)-curves
should behave symmetrically with respect to the point
2Rodd(Vt = V(c)t ). Evidently, for each curve of a given Vb in
figure 5(b), on the far left (|Vt| � |V

(c)
t |) the odd resistance

becomes dominant and the quantity 2Rodd approaches the
corresponding total resistance presented in figure 5(a). On the
other side, Rodd → 0 as Vt → V(c)t (indicated by arrows in
the figure). Qualitatively, the 2Rodd(Vt)-dependences as seen
in figure 5(b) for samples of different Vb describe well the
experimental data reported in [13].

5. Current and shot noise

In order to study the current–voltage (I–V) characteristics,
it is assumed that a symmetric bias [+eVsd/2,−eVsd/2] is
applied to the two leads (source and drain), linked to the
structure under measurement. For a given Vsd, the drain
current I can be calculated using equation (7), where T (E, θ)
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Figure 6. (a) Current–voltage and (b) Fano factor–voltage
characteristics for three junctions with
[L (nm),Vb (V),Vt (V)] = [25, 35,−6] (solid blue lines),
[25, 40,−6] (dashed red lines) and [50, 40,−3.5] (dash–dotted
green lines). The bias voltage Vsd is symmetrically applied to the
source and the drain.

is the transmission probability of the potential barrier of
equation (3), modified by the bias Vsd.

Figure 6(a) shows the I–V curves for three GBJs different
in one or two parameter values as given in the figure. In
general, by gradually rising the bias voltage Vsd, starting
from Vsd = 0, the current I first increases progressively, then
experiences a slowing down at some bias voltage, which
mainly depends on the back gate voltage Vb, i.e. on the global
carrier density n1 in the stripe (n1 = 0.3 × 1012 cm−2 for
the solid line and 0.74 × 1012 cm−2 for the dashed and
dash–dotted lines). Crossing this bias voltage, currents weakly
fluctuate and even go through a slightly negative differential
resistance (NDR) region. The position and the width of this
NDR region depend on the junction parameters as can be
seen in figure 6(a). Calculations reveal a close association
between the observed NDR and the bias-dependence of
the transmission probability. In any case, examining the
I–V curves for a number of GBJs with different values of
parameters, including Vb,Vt, L, and W also, shows that within
the model of interest the NDR effect is always rather weak.

Finally, we study the shot noise. As a consequence of
the quantization of charge, the shot noise yields transmission
information that is not available from the conductance: the
zero-frequency noise can probe the effects of disorder, carrier
statistics, and interaction in nano-samples [31]. For the wide
stripes of ballistic graphene (W/L ≥ 4, where W is the width

and L the length of the stripe) the Fano factor F in the
linear regime is predicted to be 1/3 at the charge-neutrality
point and ∼0.12 in both n and p regimes [21]. This value
of F is then suggested to be held in graphene double barrier
structures [34]. Further, the value of F = 1− 1/

√
2 ≈ 0.29 is

predicted for the shot noise across a ballistic n–p junction [27].
Moreover, the value F ≈ 0.30 is also predicted for strong,
smooth ‘charge-puddle’ disorders, both at and away from
the charge-neutrality point [35]. Experimentally, while the
shot noise of F = 1/3 has been observed in wide ballistic
two-terminal graphene devices [33], the theoretical value F ≈
0.29 is considerably lower than the experimental value of
∼0.38 reported for both p–n and n–p samples [36].

Within our potential model the zero-bias Fano factor of
equation (7) is depicted in figure 5(c) as a function of the top
gate voltage Vt for the same GBJs with resistances analyzed in
figures 5(a) and (b). All the F(Vt)-curves in figure 5(c) show
the common features as follows: (i) in the n–p–n regime of
Vt < V(c)t (indicated by the corresponding arrow), the Fano
factor F strongly oscillates against Vt in accordance with
the oscillation of the corresponding resistance in figure 5(a),
(ii) in this rather regular oscillation F varies between the
equal maxima of ≈0.36 and the equal minima of ≈0.08, and
(iii) in the n–n′–n regime of Vt > V(c)t , the noise fast moves
down to the zero noise, F = 0, which should be realized in
the limiting case when all channels are perfectly transparent.
While the observed harmony of oscillations in resistance R
(figure 5(a)) and in Fano factor F (figure 5(c)) of the same
GBJ is quite well understood [31], the fact that all three curves
for various GBJs in figure 5(c) exhibit practically the same
maxima of 0.36 and the same minima of 0.08 causes a little
surprise. In any case, this value of F = 0.36 is rather close
to the experimental value of 0.38 claimed in [36]. Actually,
on the whole, the F(Vt)-curves shown in figure 5(c) are quite
similar to that obtained for the trapezoidal potential barrier
model in [22].

Thus, our model provides the shot noise with F ≈ 0.36
for n–p–n GBJs in the linear regime. A question might
then arise of whether the bias voltage which modifies the
potential barrier and changes the transmission probability can
enhance the noise or even cause a super-Poissonian noise as it
did in conventional semiconductor/metal nanostructures [37].
To shed light on this question, we show in figure 6(b)
the F(Vsd)-characteristics for the same GBJs with I–V-
characteristics presented in figure 6(a). So, it is useful to make
a comparison between the two curves, I(Vsd) and F(Vsd), for
the same junction to gain possible correlations between the
two characteristics. Actually, figure 6(b) demonstrates that for
a given junction, in accordance with the current fluctuation in
figure 6(a), the Fano factor, starting from the value F(Vsd =

0), fluctuates against the bias between the values ∼0.18 and
∼0.25. Noticeably, though the starting values of F at zero bias
are different, with increasing bias voltage Vsd all three curves
in figure 6(b) soon become fluctuating within almost the same
range of magnitudes. Besides, comparing the I(Vsd)-curve in
figure 6(a) and the F(Vsd)-curve in figure 6(b) for the same
sample also shows that the noise fluctuation is always much
more profound, compared to the current one.
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6. Conclusion

We have suggested an alternative model of Gaussian-type
potential to describe transport properties of the locally gated
GBJs. The advantage of this model consists in its reality
and simplicity as well as its ability to describe GBJs in all
possible charge density regimes, including smooth transitions
between these regimes. Using the suggested model we have
systematically studied the transmission probability T , the
resistance R, the current–voltage characteristics, and the shot
noise for ballistic GBJs of different top gate lengths under
largely varying gate voltages at zero temperature. An analysis
of T calculated as a function of various parameters such as
the incident angle, the incident energy, or the top gate length
reveals multifarious manifestations of the Klein tunneling
and the inside-barrier interference effects. Certainly, these
effects should also be manifested in the junction resistance
R, which shows a strong oscillation with respect to Vt in
the n–p–n charge density regime and an asymmetry with
respect to the maximum located at the top gate voltage
where the n–p–n to n–n′–n regime transition occurs. Observed
properties of calculated R as well as those of the odd part of
resistances, Rodd, are all in good agreement with experiments.
In accordance with the resistances, the zero-bias Fano factor
experiences an equal oscillation between the maxima of 0.36
and the minima of 0.08 in the n–p–n regime and vanishes in
the n–n′–n regime, regardless of junction parameters. With
increasing bias voltage Vsd, the Fano factor, starting from
the value F(Vsd = 0), becomes fluctuating with respect to
bias. This noise fluctuation does correlate with the current
fluctuation in the current–voltage characteristics, which often
shows a slightly negative differential resistance region.

Numerical results shown in this work are focused on
the junctions in the n–p–n regime. In fact, the Gaussian-type
potential model deals equally with junctions in all possible
regimes, including continuous transitions between them.
Hopefully, this model might also be useful for describing
transport properties in different types of locally gated bipolar
junction, such as bilayer graphene or graphene based ones.
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