

ICTP Asian Network School and Workshop on Complex Condensed Matter Systems

Quantum transport through charge Kondo circuits: Role of electron-electron interactions in Luttinger liquid

Thi Kim Thanh Nguyen, IOP-VAST

Collaboration: Anton Parafilo, PCS-IBS, Hong Quang Nguyen, IOP-VAST, Mikhail Kiselev, ICTP

Hanoi, November 10th, 2023

Outline

- Kondo effect
- Charge Kondo implementation
- Luttinger liquid
- Thermoelectric transport in a two-channel charge Kondo circuit
- Charge Kondo circuit as a detector for e-e interactions in a Luttinger Liquid
- Conclusion

Spin flip: Anderson explanation

Kondo effect in quantum dots

QD with odd number of electrons: quantum impurity

D. Goldhaber-Gordon et al., Nature 391 (1998)

W. G. van der Wiel et al., Science 289 (2000)

Kondo theory: low T but T>TK

Charge Kondo effect in Flensberg-Matveev-Furusaki model

- QD with CB effect: quantum impurity
- Electrons in the dot: up iso-spin; electrons out of the dot: down iso-spin
- Spin projections of electron: orbital channels

TKTN, MNK, VEK, PRB (2010): any finite magnetic field induces NFL-FL crossover at temperature $T_{min} \sim r_0^2 E_C (B/B_c)^2$

Charge Kondo implementation by Integer Quantum Hall edge currents

Two channel charge Kondo: Z. Iftikhar et al, Nature 526 (2015)

Three channel charge Kondo: Z. Iftikhar et al, Science 360 (2018).

Multi-channel charge Kondo: possible!

Conventional Kondo with S=1/2	Charge Kondo
Spin $\frac{1}{2}$ of es	Real es' location
Interaction between spin of impurity and spin of conduction es	Backscattering at QPCs
Number of orbital channels	Number of QPCs
	Charge degree of freedom is blocked, charge quantization

Luttinger liquid

Luttinger liquid: systems of 1D interacting fermions

Fermi liquid	Luttinger liquid
Landau	Tomonaga, Luttinger
Elementary excitations are quasiparticles (fermions)	Elementary excitations are collective excitations (bosons)
Weak correlations	Strong correlations
1-1 correspondence between quasiparticles and excitations of FEG	

Bosonization technique:

Non-interacting spinless model:

$$H = \sum_{k;r=R,L} v_F(\epsilon_r k - k_F) c_{r,k}^{\dagger} c_{r,k}$$
$$\longrightarrow H = \frac{1}{2\pi} \int dx v_F \left[(\pi \Pi (x))^2 + (\nabla \phi (x))^2 \right]$$

Luttinger liquid Interacting spinless model: $H = \sum v_F(\epsilon_r k - k_F) c_{r,k}^{\dagger} c_{r,k}$ k;r=R,L $H_{\rm int} = \frac{1}{2\Omega} \sum_{k,k',q} V(q) c^{\dagger}_{k+q} c^{\dagger}_{k'-q} c_{k'} c_k$ g_{Δ} $(q \sim 2k_F)$ g_1 g_{γ}

T. Giamarchi,

Quantum Physics in One Dimension (Oxford University Press, Oxford, UK, 2003).

Our theoretical model 1

The action components

$$\begin{split} \mathcal{S}_{0} &= \mathcal{S}_{0}^{(\rho)} + \mathcal{S}_{0}^{(\sigma)}, \\ \mathcal{S}_{0}^{(\rho)} &= \frac{v_{F\rho}}{2\pi g_{\rho}} \int dx \int_{0}^{\beta} dt \left[\frac{(\partial_{t} \phi_{\rho})^{2}}{v_{F\rho}^{2}} + (\partial_{x} \phi_{\rho})^{2} \right], \\ \mathcal{S}_{0}^{(\sigma)} &= \int dx \int_{0}^{\beta} dt \left\{ \frac{v_{F\sigma}}{2\pi g_{\sigma}} \left[\frac{(\partial_{t} \phi_{\sigma})^{2}}{v_{F\sigma}^{2}} + (\partial_{x} \phi_{\sigma})^{2} \right] \right. \\ &+ \frac{2g_{1\perp} D^{2}}{(2\pi v_{F})^{2}} \cos(\sqrt{8}\phi_{\sigma}(x,t)) \right\}. \end{split}$$

$$S_{C} = E_{C} \int_{0}^{\beta} dt [n_{\tau}(t) + \frac{\sqrt{2}}{\pi} \phi_{\rho}(0, t) - N]^{2}.$$
$$S' = -\frac{2D}{\pi} |r| \int_{0}^{\beta} dt \cos[\sqrt{2}\phi_{\rho}(0, t)] \cos[\sqrt{2}\phi_{\sigma}(0, t)]$$

Perturbative Results: Massless spin case:

$$S \sim -\frac{|r^*|^2}{e} \sin(2\pi N) \log\left(\frac{E_C}{T}\right) \left(\frac{T}{g_\rho E_C}\right)^{g_\sigma - 1} \qquad g_\sigma \ge 1$$
$$|r^*| = |r| (g_\rho E_C / D)^{(g_\rho + g_\sigma)/2 - 1}$$

Perturbative Results: Massive spin case:

Mass of the spin field: $M=D(v_{F\sigma}/v_F)(|g_{1\perp}|/\pi v_{F\sigma})^{1/(2-2g_{\sigma})}$

$$S \sim -\frac{1}{e} |r^*| \sin(2\pi N) \frac{T}{g_\rho E_C} \left(\frac{M}{2\sqrt{2}g_\rho E_C}\right)^{\frac{g_\sigma}{2}} \qquad g_\sigma < 1$$

The temperature scaling $T^{g_{\sigma}-1}\log T$ is NFL behavior. The temperature scaling $S \propto T$ is FL behavior.

The validity of the perturbation theory: $|r^*|^2 g_
ho E_C \ll T \ll g_
ho E_C$

What physical quantities do control the crossover from 2CK to 1CK?

In our PRB 82, 113306 (2010): B field breaks the symmetry between 1 and 1 spins \longrightarrow 2CK - 1CK crossover with decreasing the temperature.

In this work: PRB 105, L121405 (2022): $g_{1\perp}$ process in the LL induces the instant asymmetry of and $\hat{|}$ spins $\hat{|}$ \implies 2CK - 1CK crossover.

Alternative point of view: in the charge Kondo effect: Charge mode is always blockaded (or gapped) locally. If spin mode is unblockaded → gapless spin mode: NFL - 2CK. If spin mode is additionally gapped (by either Zeeman effect or manybody effect in the LL) → the local NFL state is destroyed.

Our theoretical model 2

At 2CK fixed point:
$$|r_1| = |r_2| = |r|$$
 we obtain:
 $G = G_0[1 - 4C_2(g)|r^*|^2(T/gE_C)^g], \quad |r^*| = |r|(gE_C/D)^{g-1}$

accounts for both electron-electron interactions and 2CCK correlations.

At low temperatures: $G = G_0[1 - (T/T^*)^g]$

Conditions for perturbative solution: LL parameter: $0.6 \le g < 1$ and temperature regime: $|r^*|^{2/(2-\bar{g})}gE_C \ll T \ll gE_C$

TN, AP, QN, MK, PRB 107, L201402 (2023)

Conclusions

Thermoelectric transport in a Luttinger liquid based twochannel charge Kondo circuit:

> Massless spin field: 2CK: NFL: $S \propto T^{g_{\sigma}-1} \log T$

 \succ Massive spin field: 1CK: FL: $S \propto T_{
m s}$

- The relevance of g_{1⊥} process induces the universal crossover from NFL-2CK to FL-1CK.
- * Quantum transport through a 2CCK circuit: $L \ll a$ in the temperature range $|r^*|^{2/(2-g)}gE_C \ll T \ll gE_C$.
- ☆ Temperature scaling of the linear electric conductance: $G_0 G \propto (T/T^*)^g \implies \text{NFL picture} \implies \text{determine the}$ e-e interactions in the 2CCK IQH setups.

Thank you for your attention!