

Applications of scale invariant scattering formalism to critical systems

quenched disorder, local symmetry, coupled symmetries

Noel Lamsen, Ph.D.

SISSA & NIP UPD, 10 November 2023

Based on:

- Delfino, G., and Lamsen, N., 2018. J. High Energy Phys. 77. https://doi.org/10.1007/JHEP04(2018)077
- Delfino, G., and Lamsen, N., 2019. J. Stat. Mech. 024001. https://doi.org/10.1088/1742-5468/aaf716
- Delfino, G., and Lamsen, N., 2019. J. Phys. A: Math. Theory 52 35LT02. https://doi.org/10.1088/1751-8121/ab3055
- Delfino, G., and Lamsen, N., 2019. Eur. Phys. J. B 92 278. https://doi.org/10.1140/epjb/e2019-100451-6
- Delfino, G., Diouane, Y., Lamsen, N., 2020. J. Phys. A: Math. Theory 54 03LT01. https://doi.org/10.1088/1751-8121/abd2fc
- Diouane, Y., Lamsen, N., and Delfino, G., 2021. J. Stat. Mech. 033214. https://doi.org/10.1088/1742-5468/abe6fc
- Diouane, Y., Lamsen, N., and Delfino, G., 2022. J. Stat. Mech. 023201. https://doi.org/10.1088/1742-5468/ac4983
- Lamsen, N., Diouane, Y., Delfino, G., 2023. J. Stat. Mech. 013203. https://doi.org/10.1088/1742-5468/aca901
- Diouane, Y., Lamsen, N., Delfino, G., 2023. J. Stat. Mech. 043204. https://doi.org/10.1088/1742-5468/acc8c9

Outline

Introduction

Motivation Scale invariant scattering

Applications

O(N) vector model Quenched disordered O(N) and Potts model Local symmetry: RP^{N-1} and CP^{N-1} $O(N) \times Z_2$ and $S_q \times S_r$

Summary

Motivation

- Critical phenonema
 - Universality
 - Renormalization group (RG) fixed points (FP's)
- Symmetry and dimensionality
 - ► Scale Invariance → Conformal invariance
 - Infinitely many generators in two dimensions

Lack of exact results for several relevant problems

- Composite symmetry Fully frustrated XY (FFXY) model
- Liquid crystals
- Quenched disorder with short ranged interactions

Scale invariant scattering (Delfino '13)

Main Idea

Conformal invariance applied on particles instead of fields

- Massless QFT in d = (1+1)
- Elastic scattering
- No momentum dependence

S-matrix, $S^{\rho,\sigma}_{\mu,\nu}$

Conditions for scattering amplitudes:

Crossing symmetry

$$S^{\rho,\sigma}_{\mu,\nu} = \left[S^{\rho,\nu}_{\mu,\sigma}\right]^*$$

Unitarity

$$S = S^{*}$$

$$\mu^{\rho} \qquad \nu^{\sigma}$$

$$\sum_{\lambda,\tau} \sigma^{\sigma} \qquad \rho \qquad \sigma$$

$$\sum_{\lambda,\tau} \sigma^{\sigma} \qquad \rho \qquad \sigma$$

$$\sum_{\boldsymbol{\lambda},\boldsymbol{\tau}} S^{\boldsymbol{\lambda},\boldsymbol{\tau}}_{\boldsymbol{\mu},\boldsymbol{\nu}} \left[S^{\boldsymbol{\rho},\boldsymbol{\sigma}}_{\boldsymbol{\lambda},\boldsymbol{\tau}} \right]^* = \delta^{\boldsymbol{\rho}}_{\boldsymbol{\mu}} \delta^{\boldsymbol{\sigma}}_{\boldsymbol{\nu}}$$

The same set of conditions applied to different scenarios.

 σ

Introduction

Scale invariant scattering

O(N)-vector model

- ▶ Particles: O(N)-vector multiplet a = 1, ..., N
- Scattering amplitudes:

► Unitarity:

$$1 = \rho_1^2 + \rho_2^2$$

$$0 = \rho_1 \rho_2 \cos \phi$$

$$0 = N \rho_1^2 + 2\rho_1^2 \cos 2\phi$$

Solution	Ν	ρ_1	ρ_2	$\cos \phi$
$P1_{\pm}$	$(-\infty,\infty)$	0	± 1	-
$P2_{\pm}$	[-2, 2]	1	0	$\pm \frac{1}{2}\sqrt{2-N}$
$P3_{\pm}$	2	[0,1]	$\pm \sqrt{1-\rho_1^2}$	0

▶
$$P1 - Free, T = 0$$

P3 – Berezinskii-Kosterlitz-Thouless (BKT)

All FP's from a single set of equations

Disordered O(N) model (Delfino, Lamsen '18-'19)

▶ Particles with replica index: a_i , i = 1, ..., n

Quenched disordered O(N) and Potts model

Unitarity

$$\begin{split} 1 &= \rho_1^2 + \rho_2^2, \\ 0 &= \rho_1 \rho_2 \cos \phi, \\ 0 &= N \rho_1^2 + N(n-1)\rho_4^2 + 2\rho_1^2 \cos 2\phi, \\ 1 &= \rho_4^2 + \rho_5^2, \\ 0 &= \rho_4 \rho_5 \cos \theta, \\ 0 &= 2N \rho_1 \rho_4 \cos(\phi - \theta) + N(n-2)\rho_4^2 + 2\rho_2 \rho_4 \cos \theta + 2\rho_1 \rho_4 \cos(\phi + \theta). \end{split}$$

• Disorder strength $\sim \rho_4$:

$$\rho_4 \rightarrow 0 \Longrightarrow \mathsf{Pure} \mathsf{ case}$$

Quenched disordered O(N) and Potts model

 $\Leftarrow \mathsf{Schematic} \; \mathsf{RG} \; \mathsf{flow}$

Nishimori-like end point:

$$N_* = \sqrt{2} - 1 = 0.414...$$

 $N_*^{
m num.}pprox 0.5$ (Shimada et al. '14)

10/11/2023 11/27

Potts model

Permutation symmetry, \mathbb{S}_q Particles $A_{\alpha,\beta}$, $\alpha \neq \beta = 1, \dots, q$									
α	$\delta \beta$	α	$\gamma \beta$		γ^{α}	$\alpha \gamma \alpha$			
S_0	$= \rho_0$	S_1	$= \rho e^{i\varphi}$	S_2 =	$= \rho e^{-i\varphi}$	$S_3 = \rho_3$			
	Solution	Demme							
		Range	$ ho_0$	ρ	$2\cos\varphi$	$ ho_3$			
	I	Range $q = 3$	ρ_0 0, $2\cos\varphi$	ρ 1	$2\cos\varphi$ $\in [-2,2]$	ρ ₃ 0			
	I II _±	$q = 3$ $q \in [-1, 3]$	$ \begin{array}{c} \rho_0 \\ 0, 2\cos\varphi \\ 0 \end{array} $	ρ 1 1	$2\cos\varphi$ $\in [-2,2]$ $\pm\sqrt{3-q}$	$ \begin{array}{c} \rho_3 \\ 0 \\ \pm \sqrt{3-q} \end{array} $			
	 _± _±	Range q = 3 $q \in [-1, 3]$ $q \in [0, 4]$	$ \begin{array}{c} \rho_0 \\ 0, 2\cos\varphi \\ 0 \\ \pm 1 \end{array} $	$\frac{\rho}{1}$ 1 $\sqrt{4-q}$	$2\cos\varphi$ $\in [-2,2]$ $\pm\sqrt{3-q}$ $\pm\sqrt{4-q}$	ρ_3 0 $\pm\sqrt{3-q}$ $\pm(3-q)$			
	I II _± III _± IV _±	Range q = 3 $q \in [-1, 3]$ $q \in [0, 4]$ $q \in [\frac{7 - \sqrt{17}}{2}, 3]$	ρ_0 $0, 2 \cos \varphi$ 0 ± 1 $\pm \sqrt{\frac{q-3}{q^2-5q+5}}$	ρ 1 1 $\sqrt{4-q}$ $\sqrt{\frac{q-4}{q^2-5q+5}}$	$\begin{array}{l} 2\cos\varphi\\ \in \left[-2,2\right]\\ \pm\sqrt{3-q}\\ \pm\sqrt{4-q}\\ \pm\sqrt{(3-q)(4-q)} \end{array}$	ρ_{3} 0 $\pm\sqrt{3-q}$ $\pm(3-q)$ $\pm\sqrt{\frac{q-3}{q^{2}-5q+5}}$			

(Delfino & Tartaglia '17)

Applications

Quenched disordered O(N) and Potts model

10/11/2023 12/27

(Delfino '17)

\blacktriangleright Disorder strength $\sim \rho_4$

Applications

Quenched disordered O(N) and Potts model

10/11/2023 13/27

Disordered Potts RG flow (Delfino, Lamsen '19)

Applications

Quenched disordered O(N) and Potts model

Superuniversality

- \blacktriangleright Theory sectors independent of symmetry parameters N or q
- Arises exactly at $n \to 0$ replica limit (first analytic evidence)

$$S = \begin{cases} S_3 + (q-2)S_2 + (n-1)(q-1)S_4, & q\text{-Potts} \\ NS_1 + S_2 + S_3 + (n-1)NS_4, & O(N) \end{cases}$$

Mechanism for superuniversal crit. exponents, explains puzzling findings since '90s (Chen et al. '93 & '95, Wisemann & Domany '95, ...)

Liquid crystals (Delfino, Diouane, Lamsen '20-'23)

Lebwohl-Lasher model

- Nearest neighbor interaction: $(\mathbf{s}_i \cdot \mathbf{s}_j)^2$
- Nematic-isotropic topological transition?

- $\blacktriangleright \ O(N) + \text{``head-tail'' symmetry} \Longrightarrow RP^{N-1} \text{ model}$
- \blacktriangleright Order parameter: $Q_i^{a,b}=s_i^as_i^b-rac{1}{N}\delta_{a,b}$ (de Gennes '705)

Scattering of particles with two indices

Applications

Local symmetry: RP^{N-1} and CP^{N-1}

▶ Traceless sector \rightarrow reduces to amplitudes $S_{1 \le k \le 6}$ only

• Unitarity $(M_N = \frac{1}{2}N(N+1) - 1)$

$$\begin{split} 1 &= \rho_1^2 + \rho_2^2 + 4\rho_4^2, \\ 0 &= 2\rho_1\rho_2\cos\phi + 4\rho_4^2, \\ 0 &= M_N\rho_1^2 + 2\rho_1^2\cos 2\phi + 2\rho_1\rho_2\cos\phi + 4\left(1 - \frac{2}{N} + N\right)\rho_1\rho_4\cos(\phi - \theta) \\ &+ 4\left(1 - \frac{2}{N}\right)\rho_1\rho_4\cos(\phi + \theta) + \frac{32}{N^2}\rho_4^2\cos 2\theta + 4\left(1 - \frac{2}{N} + N\right)\rho_1\rho_5\cos\phi \\ &+ 8\left(1 + \frac{8}{N^2}\right)\rho_4\rho_5\cos\theta + 4\left(1 + \frac{8}{N^2}\right)\rho_4^2 + 4\left(1 + \frac{4}{N^2}\right)\rho_5^2, \\ 0 &= 2\rho_2\rho_5 + 2\rho_1\rho_4\cos(\phi + \theta) - \frac{8}{N}\rho_4^2 + 2\left(1 - \frac{4}{N}\right)\rho_4^2\cos 2\theta \\ &+ 2\left(3 - \frac{8}{N} + N\right)\rho_4\rho_5\cos\theta - \frac{4}{N}\rho_5^2, \\ 0 &= 2\rho_2\rho_4\cos\theta + \left(2 - \frac{8}{N} + N\right)\rho_4^2 + 2\left(1 - \frac{4}{N}\right)\rho_4^2\cos 2\theta + 2\rho_1\rho_5\cos\phi \\ &+ 2\left(1 - \frac{8}{N}\right)\rho_4\rho_5\cos\theta + \left(2 - \frac{4}{N} + N\right)\rho_5^2, \\ 0 &= 2\rho_1\rho_4\cos(\phi - \theta) + 2\rho_2\rho_4\cos\theta + 2\rho_4^2. \end{split}$$

Applications

Local symmetry: RP^{N-1} and CP^{N-1}

- Contains $O(M_N)$ FP's as a particular case
- Line of FP's at N = 2: $M_2 = 2 \Longrightarrow O(2) \sim RP^1$

- No line of FP's for N > 2: No quasi-long-range ordering (QLRO)
- Correlation length suppression as $T \rightarrow 0$ for N > 2

$$\xi_M \propto T^{1/(M-2)} e^{A/[(M-2)T]} \Longrightarrow \xi_{M_N} \ll \xi_N$$

explains puzzling results of simulations (Sinclair '82, Carraciolo et al. '93, ...)

Applications

$CP^{N-1} \ \mathrm{model}$ (Diouane, Lamsen, Delfino '22-'23)

Consider continuous local U(1) symmetry (c.f. Z_2)

- ▶ U(N) global + U(1) local symmetry $\Longrightarrow CP^{N-1}$ model
- Order parameter: $Q_i^{a,b} = z_i^a (z_i^b)^* \frac{1}{N} \delta_{a,b}$
- Scattering of particles matching appropriate indices

Local symmetry: RP^{N-1} and CP^{N-1}

▶ Traceless sector → reduces to amplitudes S_{1≤k≤6} only
 ▶ Unitarity (M_N = N² − 1)

$$\begin{split} 1 &= \rho_1^2 + \rho_2^2 + 2\rho_4^2 \\ 0 &= 2\rho_1\rho_2\cos\phi + 2\rho_4^2 \\ 0 &= M_N\rho_1^2 + 2\rho_1^2\cos 2\phi + 2\rho_1\rho_2\cos\phi + 4\left(N - \frac{1}{N}\right)\rho_1\left(\rho_4\cos(\theta - \phi) + \rho_5\cos\phi\right) \\ &- \frac{4}{N}\rho_1\rho_4\cos(\theta + \phi) + \frac{8}{N^2}\rho_4^2\cos 2\theta + 2\left(1 + \frac{4}{N^2}\right)\rho_4\left(\rho_4 + 2\rho_5\cos\theta\right) \\ &+ 2\left(1 + \frac{2}{N^2}\right)\rho_5^2 \\ 0 &= 2\rho_1\rho_5\cos\phi + 2\rho_2\rho_4\cos\theta - \frac{4}{N}\rho_4^2\cos 2\theta + \left(N - \frac{4}{N}\right)\rho_4^2 - \frac{8}{N}\rho_4\rho_5\cos\theta \\ &+ \left(N - \frac{2}{N}\right)\rho_5^2 \\ 0 &= 2\rho_1\rho_4\cos(\theta + \phi) + 2\rho_2\rho_5 - \frac{4}{N}\rho_4^2\cos 2\theta - \frac{4}{N}\rho_4^2 + 2\left(N - \frac{4}{N}\right)\rho_4\rho_5\cos\theta - \frac{2}{N}\rho_5^2 \\ 0 &= 2\rho_1\rho_4\cos(\theta - \phi) + 2\rho_2\rho_4\cos(\theta) \,. \end{split}$$

Applications

Local symmetry: ${RP}^{N-1}$ and ${CP}^{N-1}$

10/11/2023 20/27

• Contains $O(M_N)$ FP's as a particular case

• Line of FP's at
$$N = \sqrt{3}$$
: $M_{\sqrt{3}} = 2$

- No line of FP's for N > 2: No quasi-long-range ordering (QLRO)
- ▶ Branches of FP's for $N < 2 \longrightarrow \text{loop gas w}/\text{ intersections}$

Local symmetry: RP^{N-1} and CP^{N-1}

Vector-Ising model (Delfino, Lamsen '19)

Fully frustrated XY model

- Josephson junction array in magnetic field (Teitel & Jayaprakash '83)
- Non-perturbative (BKT)

► Vector-Ising coupling, *B*,

Applications

 $O(N) \times Z_2$ and $S_q \times S_r$

10/11/2023 22/27

 Solution set contains decoupled case
 N = 2: Decoupled solutions only
 No new universality class at N = 2 including FFXY model

Lines of FP's at N = 1first exact determination

Correlated percolation (Lamsen, Diouane, Delfino '23)

Coupled q-state Potts with r-state Potts

$$\mathcal{H}_{q,r} = -J_1 \sum_{\langle i,j \rangle} \delta_{s_{i,1},s_{j,1}} - J_2 \sum_{\langle i,j \rangle} \delta_{s_{i,2},s_{j,2}} - J \sum_{\langle i,j \rangle} \delta_{s_{i,1},s_{j,1}} \delta_{s_{i,2},s_{j,2}}$$

- Correlated percolation at $r \to 1$
- Scattering amplitudes

10/11/2023 24/27

- For integer q, r > 1, only q = r = 2 coupled criticality is possible Ashkin-Teller criticality
- At r → 1, no critical line continuously defined in q ∈ [2, 4]
 Potts spin clusters as analytic continuation of FK clusters cannot hold for all cluster properties
- Appearance of surfaces of FP at q = r

corresponding to results from coupled square lattice antiferromagnets (Fendley & Jacobsen '08; Vernier, Jacobsen, Saleur '14)

 $O(N) \times Z_2$ and $S_q \times S_r$

 RG FP's of two-dimensional statistical models obtained exactly from scale invariant scattering.

 Non-perturbative insights on critical behavior of various models in two dimensions.

- Phase diagram
- RG flows
- Behavior of critical exponents

–End– Thank you

Based on:

- Delfino, G., and Lamsen, N., 2018. J. High Energy Phys. 77. https://doi.org/10.1007/JHEP04(2018)077
- Delfino, G., and Lamsen, N., 2019. J. Stat. Mech. 024001. https://doi.org/10.1088/1742-5468/aaf716
- Delfino, G., and Lamsen, N., 2019. J. Phys. A: Math. Theory 52 35LT02. https://doi.org/10.1088/1751-8121/ab3055
- Delfino, G., and Lamsen, N., 2019. Eur. Phys. J. B 92 278. https://doi.org/10.1140/epjb/e2019-100451-6
- Delfino, G., Diouane, Y., Lamsen, N., 2020. J. Phys. A: Math. Theory 54 03LT01. https://doi.org/10.1088/1751-8121/abd2fc
- Diouane, Y., Lamsen, N., and Delfino, G., 2021. J. Stat. Mech. 033214. https://doi.org/10.1088/1742-5468/abe6fc
- Diouane, Y., Lamsen, N., and Delfino, G., 2022. J. Stat. Mech. 023201. https://doi.org/10.1088/1742-5468/ac4983
- Lamsen, N., Diouane, Y., Delfino, G., 2023. J. Stat. Mech. 013203. https://doi.org/10.1088/1742-5468/aca901
- Diouane, Y., Lamsen, N., Delfino, G., 2023. J. Stat. Mech. 043204. https://doi.org/10.1088/1742-5468/acc8c9