

PCS Center for Theoretical Physics of Complex Systems

Anton Parafilo

Photoinduced supercurrent Hall effect in 2D superconductors

in collaboration with K. Sonowal, M. Sun, V. Kovalev, I. Savenko

Asian Network School and Workshop on Complex Condensed Matter Systems Hanoi, 6-10 November 2023

Outline

- Main goal of project
- Brief historical introduction
- Model, Methods, Problems
- Results
- Summary

Main goal

Ordinary Hall effect

Is it possible to create Hall-like phenomena in 2D superconductors (SC film)?

Anomalous Hall effect

Spin-orbit interaction, Skew scattering, Berry phase, etc.

Photovoltaic Hall effect

PVE – effect of appearance of the dc current in homogeneous medium under uniform illumination.

$$j_{\alpha} = \sigma_{\alpha\beta}E_{\beta} + \sigma_{\alpha\beta\gamma}\left(E_{\beta}E_{\gamma}^{*} + h.c.\right) + \chi_{\alpha\beta\gamma}\left(E_{\beta}E_{\gamma}e^{-i2\omega t} + h.c.\right) + \dots$$

Durnev, Phys. Rev. B 104, 085306 (2021)

4

Superconductors

$$H = E_0 + \sum_{\mathbf{p}} \begin{pmatrix} a_{p,\uparrow}^{\dagger} , a_{-p,\downarrow} \end{pmatrix} \begin{bmatrix} \xi_p & \Delta \\ \Delta^* & -\xi_p \end{bmatrix} \begin{pmatrix} a_{p,\uparrow} & A_{-p,\downarrow} \end{pmatrix}$$

Bogoliubov transformation:

$$c_{p\uparrow} = u_p a_{p\uparrow} + v_p a_{-p\downarrow}^{\dagger} \qquad u_p^2, v_p^2 = \frac{1}{2} \left(1 \pm \frac{\xi_p}{\epsilon_p} \right)$$
$$c_{p\downarrow} = -v_p a_{p\downarrow}^{\dagger} + u_p a_{-p\uparrow} \qquad u_p^2 + v_p^2 = 1$$
$$H = E_0 + \sum_p \epsilon_p c_{p\sigma}^{\dagger} c_{p\sigma} \qquad \epsilon_p = \sqrt{\xi_p^2 + |\Delta|^2}$$

Interacting Hamiltonian:

$$H = \sum_{p} \xi_{p} a_{p\sigma}^{\dagger} a_{p\sigma} - \frac{\lambda}{2} \sum_{pq} a_{p\sigma}^{\dagger} a_{-p\tau}^{\dagger} a_{q\tau} a_{-q\sigma}$$
$$\xi_{p} = \frac{p^{2}}{2m} - \epsilon_{F}$$

Mean field: $\Delta = \lambda \sum_{q} \langle a_{q\downarrow} a_{-q\uparrow} \rangle$

Light absorption in superconductors

 $\omega > 2\Delta$

Mattis, Bardeen, *Theory of the Anomalous Skin Effect in Normal and Superconducting Metals*, Phys. Rev. **111**, 412 (1958)

Mattis-Bardeen theory

 $Q(\omega, \mathbf{q}) = Q_n(\omega, \mathbf{q}) + Q_a(\omega, \mathbf{q})$

Mattis, Bardeen, *Theory of the Anomalous Skin Effect in Normal and Superconducting Metals*, Phys. Rev. **111**, 412 (1958)

$$Q_{n}(\omega,\mathbf{q}) \propto \int_{-\infty}^{\infty} d\xi_{\mathbf{p}} \left(\frac{\epsilon_{\mathbf{p}}\epsilon_{\mathbf{p}+\mathbf{q}} + \xi_{\mathbf{p}}\xi_{\mathbf{p}+\mathbf{q}} + \Delta^{2}}{\epsilon_{\mathbf{p}}\epsilon_{\mathbf{p}+\mathbf{q}}} \right) [f(\epsilon_{\mathbf{p}}) - f(\epsilon_{\mathbf{p}+\mathbf{q}})] \\ \times \left(\frac{1}{\epsilon_{\mathbf{p}} - \epsilon_{\mathbf{p}+\mathbf{q}} + \omega + i\delta} + \frac{1}{\epsilon_{\mathbf{p}} - \epsilon_{\mathbf{p}+\mathbf{q}} - \omega + i\delta} \right)$$

$$Q_{a}(\omega,\mathbf{q}) \propto \int_{-\infty}^{\infty} d\xi_{\mathbf{p}} \left(\frac{\epsilon_{\mathbf{p}}\epsilon_{\mathbf{p}+\mathbf{q}} + \xi_{\mathbf{p}}\xi_{\mathbf{p}+\mathbf{q}} - \Delta^{2}}{\epsilon_{\mathbf{p}}\epsilon_{\mathbf{p}+\mathbf{q}}} \right) \left[1 - f(\epsilon_{\mathbf{p}}) - f(\epsilon_{\mathbf{p}+\mathbf{q}}) \right] \\ \times \left(\frac{1}{\epsilon_{\mathbf{p}} + \epsilon_{\mathbf{p}+\mathbf{q}} + \omega + i\delta} + \frac{1}{\epsilon_{\mathbf{p}} + \epsilon_{\mathbf{p}+\mathbf{q}} - \omega + i\delta} \right)$$

$$\operatorname{Re}\left[\sigma(\omega)\right] \propto \frac{1}{\omega} \left[(\omega + 2\Delta) E\left(\frac{\omega - 2\Delta}{\omega + 2\Delta}\right) - 4\Delta K\left(\frac{\omega - 2\Delta}{\omega + 2\Delta}\right) \right] \Theta(\omega - 2\Delta)$$

Model

$$2\Delta \mathbf{1}$$

Hamiltonian of single band isotropic SC in Nambu space:

$$\hat{H} = \begin{pmatrix} \xi(\mathbf{p} - \mathbf{p}_s - e\mathcal{A}(t)) & \Delta \\ \Delta & -\xi(\mathbf{p} + \mathbf{p}_s + e\mathcal{A}(t)) \end{pmatrix}$$
$$\xi(\mathbf{p}) \equiv \xi_p = \frac{\mathbf{p}^2}{2m} - \epsilon_F$$

Circularly polarized EM wave:

$$\mathcal{A}(t) = \mathcal{A}e^{-i\omega t} + \mathcal{A}^*e^{i\omega t} \qquad \mathcal{A} = (1, i\sigma)\mathcal{A}_0$$

Breaking a spatial symmetry:

$$\epsilon_p = \mathbf{v}\mathbf{p}_s + \sqrt{\xi_p^2 + |\Delta|^2}$$

Linearly polarized EM wave:
$$\mathcal{A} = (\mathcal{A}_x, \mathcal{A}_y)$$

Methods

Current operator:

$$\hat{\mathbf{j}} = -\frac{\delta \hat{H}}{\delta \mathcal{A}} = e\mathbf{v} - e\mathbf{v}_s \hat{\tau}_z - \frac{e^2}{m} \mathcal{A}(t) \hat{\tau}_z$$

$$\mathbf{j} = -i \sum_{\mathbf{p}} \operatorname{Tr}\left[\hat{\mathbf{j}} \mathcal{G}^{<}(t,t)\right]$$

 $y \downarrow_z$ $A = A_0(1, i\sigma)$ $p_s \downarrow_j y$ 2D superconductor

9

Green's function:

$$\begin{pmatrix} i\frac{\partial}{\partial t} - \hat{H} \end{pmatrix} \mathcal{G}(t, t') = \delta(t - t') \qquad \hat{H} = \hat{H}_0 + \hat{V}(\mathbf{p}_s, \mathcal{A}(t)) = \begin{pmatrix} \xi(\mathbf{p}) & \Delta \\ \Delta & -\xi(\mathbf{p}) \end{pmatrix} + \hat{V}(\mathbf{p}_s, \mathcal{A}(t))$$

$$g_0^R = \frac{1}{\epsilon - \xi_p \hat{\tau}_z - \Delta \hat{\tau}_x} = \frac{\hat{A}_0}{\epsilon - \epsilon_p + i0^+} + \frac{\hat{B}_0}{\epsilon + \epsilon_p + i0^+} \qquad \hat{A}_0 = \begin{pmatrix} u^2 & uv \\ uv & v^2 \end{pmatrix} \qquad \hat{B}_0 = \begin{pmatrix} v^2 & -uv \\ -uv & u^2 \end{pmatrix}$$

$$\hat{A}_0^2 = \hat{A}_0 \qquad \hat{B}_0^2 = \hat{B}_0 \qquad \mathrm{Tr}[\hat{A}_0 \hat{B}_0] = 0$$

Diagrams

<u>Non-linear stationary photo-response</u> (linear in P_s and quadratic in A_0):

Optical absorption in SC is forbidden due to *Galilean invariance***!**

Violation of Galilean invariance:

- Non-parabolicity of electronic band
- Multi-band superconductors
- Disorder

Disorder and relaxation

Recombination

Clean superconductors /Reizer, PRB (1998)

$$\frac{1}{\tau_R} \propto \frac{T}{\epsilon_F \tau_i} e^{-2\Delta/T}$$

Dirty superconductors /Reizer, PRB (2000)

$$\frac{1}{\tau_R} \propto \frac{T\Delta}{\epsilon_F} e^{-2\Delta/T}$$

$$g_0^R = \frac{\hat{A}_p}{\epsilon - \epsilon_p + \frac{i}{2\tau_p}} + \frac{\hat{B}_p}{\epsilon + \epsilon_p + \frac{i}{2\tau_p}}$$
$$\hat{A}_p = \hat{A}_0 + i\frac{1}{2\tau_i|\xi_p|} \begin{pmatrix} 1/2 & uv \\ uv & 1/2 \end{pmatrix}$$
$$\hat{B}_p = \hat{B}_0 - i\frac{1}{2\tau_i|\xi_p|} \begin{pmatrix} 1/2 & -uv \\ -uv & 1/2 \end{pmatrix}$$

- High frequency, $\omega > 2\Delta$ $T \approx 0$
- Weak supercurrent, $v_F p_s / \Delta \ll 1$
- Weak disorder, $\Delta \tau_i \gg 1$
- Recombination across SC gap

11

Diagrams

$$\mathbf{j} = a_{\omega} |\mathbf{A}_0|^2 \mathbf{p}_s + b_{\omega} [\mathbf{A}_0^* (\mathbf{A}_0 \cdot \mathbf{p}_s) + c.c.] + ic_{\omega} [\mathbf{p}_s \times [\mathbf{A}_0^* \times \mathbf{A}_0]]$$

Gauge invariance problem in SC

Restoring the gauge invariance:

$$\hat{\Lambda} = \bullet \hat{\tau}_{\alpha} + \begin{pmatrix} g_0 \\ \lambda \\ g_0 \end{pmatrix} \hat{\Lambda}$$

Photoinduced supercurrent Hall effect

13

Photoinduced supercurrent Hall effect

Importance:

- Fundamental reason (supercurrent coupling with light)
- Relaxation time spectroscopy
- Spectroscopy of various SC pairing mechanism

Nakamura et al., PRL (2019), PRL (2020)

Summary

• A theory of a nonlinear photoresponse in a single-band 2D isotropic SC with a built-in supercurrent, exposed to an external circularly-polarized EM field is developed. The theory accounts for the presence of impurities in the sample, which breaks the Galilean invariance for the transverse transport to take place.

• We predicted a photoinduced second-order transport phenomenon -- the emergence of a transverse (Hall-like) photoinduced supercurrent, and demonstrated, that its magnitude is determined by the quasiparticle recombination time.

• This photoinduced supercurrent Hall effect opens a way to manipulate the direction of SC condensate flow via optical tools without external magnetic fields.