Influence of magnetocaloric and electrocaloric effects on spin conductivity of an open Fermi-Hubbard lattice

Vladimir P. Villegas ¹

10 November 2023

¹Department of Mathematics and Physics, College of Science, University of Santo Tomas, España Blvd., Sampaloc 1008 Manila

Introduction

FH optical lattice

Field theoretical methods

Numerical simulations

Conclusions

Magnetocaloric and electrocaloric effects

Figure 1: Schematic diagrams of (left) magnetocaloric and (right) electrocaloric effects.

Open Fermi-Hubbard model

Figure 2: Schematic diagram of the open Fermi-Hubbard (FH) model with external EM fields [1].

- Dilute gas trapped by superposed lasers [2]
- Nearest-neighbor tunneling (t), two-particle interaction (U), chemical potential (μ)
- Applications: spin- $\frac{1}{2}$ cuprates [3, 4]

External EM field effects on entropy

Figure 3: Density plots of entropy *S* when (left) electric scalar potential E|e|d = 0 while magnetic vector potential *h* is varied and (right) h = 3t while E|e|d is varied [1, 5].

External EM field effects on heat capacity

Figure 4: Density plots of heat capacity at constant volume C_V when (left) electric scalar potential E|e|d = 0 while magnetic vector potential *h* is varied and (right) h = 3t while E|e|d is varied [1, 5].

Quantum heat engines

Figure 5: Schematic diagrams of quantum (left) Carnot and (right) Otto heat engines [6].

- Processes achieved by adjusting external fields
- Reverse cycle: quantum refrigerator

Figure 6: Schematic diagram [7]

- Charge not necessarily transported simultaneously [8]
- High T: spin and charge transport indistinguishable

Introduction

FH optical lattice

Field theoretical methods

Numerical simulations

Conclusions

Open quantum system

Total Hamiltonian [9, 10]

$$\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_{int} \tag{1}$$

Elastic Fermi-Hubbard model [11, 12, 13]:

$$\begin{split} \hat{H}_{S} &= -t \sum_{s_{s},\kappa_{s}} \left[-2t \cos \left(\kappa_{s} \delta_{s} - \mu - \frac{h}{2} s_{s} \right) \right] \hat{n} s_{s} \kappa_{s} \\ &- E |e| \delta_{s} \sum_{s_{s},\kappa_{s},\kappa_{s}'} \left(\hat{n}_{s_{s}\kappa_{s}} - \hat{n}_{s_{s}\kappa_{s}'} \right) + \frac{U_{0}}{N_{s}} \sum_{\kappa_{s},\kappa_{s}',q_{s}} \hat{c}^{\dagger}_{\uparrow\kappa_{s} - q_{s}} \hat{c}^{\dagger}_{\downarrow\kappa_{s}' + q_{s}} \hat{c}_{\downarrow\kappa_{s}'} \hat{c}_{\uparrow\kappa_{s}} \\ &+ \frac{U_{e}}{N_{s}} \sum_{s_{s},\kappa_{s},\kappa_{s}',q_{s}} \hat{c}^{\dagger}_{s_{s}\kappa_{s} - q_{s}} \hat{c}^{\dagger}_{s_{s}\kappa_{s}' + q_{s}} \hat{c}_{s_{s}\kappa_{s}'} \hat{c}_{s_{s}\kappa_{s}'} \hat{c}_{s_{s}\kappa_{s}} \end{split}$$

(2)

Bath Hamiltonian [10]: Mean-field approximation

$$\hat{H}_B = \sum_{s_B} \mathcal{E}_{\kappa_B} \hat{n}_{s_B \kappa_B} \tag{3}$$

Interaction between optical lattice and gas bath:

$$\hat{H}_{int} = \frac{2\pi\alpha_I \hbar^2}{m_I} \sum_{s_s,l} \hat{n}_{s_s l} \left(\rho_B + \frac{1}{V_B} \sum_{s_B} (u_{s_B \kappa_B}^2 - v_{s_B \kappa_B}^2 + 1) \hat{n}_{s_B \kappa_B} \right)$$
(4)

Introduction

FH optical lattice

Field theoretical methods

Numerical simulations

Conclusions

Grand canonical partition function [14]:

$$Z = \operatorname{Tr}\left[e^{-\frac{\hat{H}_{\text{total}}}{k_B T}}\right]$$
(5)

Average of any variable A:

$$\langle \hat{A} \rangle = \text{Tr} \left[\hat{A} e^{-\frac{\hat{H}_{\text{total}}}{k_B T}} \right]$$
 (6)

Consider the thermal fluctuation of A(T).

Coherent state path integral

Figure 7: Sum over all possible paths

Temperature as imaginary time:

$$\tau = it \tag{7}$$

Partition function:

$$Z = \int Dc \ Dc^{\dagger} Db \ Db^{\dagger} \exp\left[-\frac{1}{\hbar} \int_{0}^{\hbar\beta} H_{\text{total}}\left(c(\tau), c^{\dagger}(\tau), b(\tau), b^{\dagger}(\tau)\right)\right]$$
(8)
(14/33)

Ohm's Law:

$$\vec{j}(q,\omega) = \sigma(q,\omega)\vec{E}(q,\omega)$$
 (9)

Current density operator in quantum mechanics [15]:

$$\vec{j}(q,\omega) = \underbrace{\vec{j}_{\mathsf{P}}(q,\omega)}_{\mathsf{I}_{\mathsf{D}}} + \underbrace{\vec{j}_{\mathsf{D}}(q,\omega)}_{\mathsf{I}_{\mathsf{D}}}$$
(10)

paramgnetic diamagnetic

Charge current [8]:

$$j_{cx}(q,\tau) = it \sum_{s_{s},\langle l,l'\rangle} \delta_{x} \hat{c}^{\dagger}_{s_{s}l+\delta}(\tau) \hat{c}_{s_{s}l}(\tau) e^{iq\left(R_{lx}+\frac{d_{x}}{2}\right)}$$
(11)

Spin current:

$$j_{sx}(q,\tau) = \frac{it}{2} \sum_{s_s,\langle l,l'\rangle} s_s \delta_x \hat{c}^{\dagger}_{s_s l+\delta}(\tau) \, \hat{c}_{s_s l}(\tau) \, e^{iq\left(R_{lx} + \frac{d_x}{2}\right)} \tag{12}$$

Kubo formula [15, 16]

$$\sigma_{\eta\nu}(q,\omega) = \frac{i}{\omega} \left[\frac{n_0 e^2}{m} \delta_{\eta\nu} + \Pi_{\eta\nu}(q,\omega) \right]$$
(13)

Current-current correlation

$$\Pi_{\eta\nu}(q,\omega) = \lim_{i\omega_n \to \omega + i\epsilon} \int_0^{\hbar\beta} d\tau \ e^{i\omega\tau} \left\langle T_\tau j_\eta^\dagger(q,\tau) j_\nu(q,0) \right\rangle$$
(14)

Real part of conductivity

Re
$$\sigma_{\eta\nu} = \lim_{q,\omega\to 0} \frac{1}{\omega} \Pi_{\eta\nu}(q,\omega)$$
 (15)

Introduction

FH optical lattice

Field theoretical methods

Numerical simulations

Conclusions

- One-dimensional
- Half-filling

$$U_0 = \frac{\mu}{2} \tag{16}$$

• Elastic two-particle interaction

$$U_0 = U_e \tag{17}$$

• Bath-induced two-particle interaction

$$\frac{2\pi\alpha_I}{mV_B}\left(u_{s_B\kappa_B}^2 - v_{s_B\kappa_B}^2 + 1\right) = \frac{1}{4}\mathrm{sgn}\left(U_0\right) \tag{18}$$

Effect of two-particle interactions

Figure 8: Density plots of spin conductivity σ_S for (left) U > 0 and (right) U < 0 while h = E|e|d = 0.

Attractive regime: Effect of magnetic field

Figure 9: Density plots of spin conductivity σ_S for different values of (left) h > 0 and (right) h < 0 while $E|e|\delta_x = 0$ and U = -2t.

Attractive regime: Effect of electric field

Figure 10: Density plots of spin conductivity σ_S for arbitrary *h*, different values of (left) $E|e|\delta_x > 0$ and (right) $E|e|\delta_x < 0$ while U = -2t.

Repulsive interaction: Effect of magnetic field

Figure 11: Density plots of spin conductivity σ_S for E|e|d = 0, different values of (left) h > 0 and (right) h < 0 while U = 2t.

Figure 12: Density plots of spin conductivity σ_S for h = 2t, different values of (left) $E|e|\delta_x > 0$ and (right) $E|e|\delta_x < 0$ while U = 2t.

Introduction

FH optical lattice

Field theoretical methods

Numerical simulations

Conclusions

U > 0: increase of conductivity approaching zero temperature

- Finite h increases σ_S at any T
- $E|e|\delta_x > 0$ increases σ_S at any T

U < 0: backflow of fermions, uniformity under finite filed

- Charge conductivity
- Next-nearest neighbor interaction
- More bath levels
- Hubbard-Heisenberg transition
- Quantum Hall effect
- Seebeck effect

[1] V. P. Villegas and C. D. Villagonzalo.

Refrigeration using magnetocaloric and electrocaloric effects in a Fermi–Hubbard optical dimer exposed to a heat bath. *Physica A*, 600:127540, 2022.

[2] T. Esslinger.

Fermi-Hubbard Physics with Atoms in an Optical Lattice. *Annu. Rev. Cond. Matt. Phys.*, 1(1):129–152, 2010.

 T. Balcerzak and K. Szałowski.
 Hubbard pair cluster in the external fields. Studies of the polarization and susceptibility.
 Physica A, 512:1069–1084, 2018. [4] K. Szałowski and T. Balcerzak.
 Magnetocaloric and electrocaloric properties of the Hubbard pair cluster.

Journ. Magn. Magn. Mater., 527:167767, 2021.

 [5] V. P. Villegas and C. D. Villagonzalo.
 Corrigendum and addendum to "Refrigeration using magnetocaloric and electrocaloric effects in a Fermi–Hubbard optical dimer exposed to a heat bath" [Physica A 600 (2022) 127540].
 Physica A, 620:128743, 2023.

References iii

[6] V. P. Villegas and C. D. Villagonzalo.

Magnetocaloric and electrocaloric heat engine and refrigeration cycles in the open Fermi-Hubbard optical dimer with attractive interactions.

Phys. Lett. A, 481:129011, 2023.

- [7] V. P. Villegas and C. D. Villagonzalo.
 Caloric effects in an open Fermi–Hubbard optical dimer due to onsite and heat bath-induced two-particle interactions.
 J. Magn. Magn. Mater., 564:170094, 2022.
- [8] M. Ulaga, J. Mravlje, and J. Kokalj.
 Spin diffusion and spin conductivity in the two-dimensional Hubbard model.

Phys. Rev. B, 103:155123, 2021.

References iv

 [9] H. P. Breuer and F. Petruccione.
 The Theory of Open Quantum Systems. Oxford University Press, 2002.

[10] R. C. F. Caballar, S. Diehl, H. Mäkelä, M. Oberthaler, and G. Watanabe.

Dissipative preparation of phase- and number-squeezed states with ultracold atoms.

Phys. Rev. A, 89:013620, Jan 2014.

[11] D. Jaksch and P. Zoller.

The cold atom Hubbard toolbox.

Ann. Phys., 315(1):52–79, 2005. Special Issue.

References v

- [12] T. Balcerzak and K. Szałowski.
 - Hubbard pair cluster with elastic interactions. Studies of thermal expansion, magnetostriction and electrostriction. *Physica A*, 531:121740, 2019.
- [13] T. Balcerzak and K. Szałowski.
 - Hubbard pair cluster in the external fields. Studies of the chemical potential.

Physica A, 468:252–266, 2017.

[14] L E Reichl.

A Modern Course in Statistical Physics. Wiley-VCH, Weinheim, Fourth edition, 2016.

[15] P. Coleman.

Introduction to Many-Body Physics.

Cambridge University Press, 2015.

[16] G. D. Mahan. Many-Particle Physics.

Springer Science & Business Media, 2000.

Influence of magnetocaloric and electrocaloric effects on spin conductivity of an open Fermi-Hubbard lattice

Vladimir P. Villegas ¹

10 November 2023

¹Department of Mathematics and Physics, College of Science, University of Santo Tomas, España Blvd., Sampaloc 1008 Manila

