Properties of the Eigenstates of Graphene Billiards: A comparison with Relativistic and Nonrelativistic Quantum Billiards

- Quantum Chaos → Classical Billiards, Quantum Billiards (QB), Neutrino Billiards (NB), Graphene Billiards (GB)
- Experiments with Superconducting Microwave Billiards Simulating Artificial Graphene

Collaborators: Weihua Zhang (Lanzhou University + PCS IBS Daejeon) Experiments:

@ TU Darmstadt: Achim Richter, Maksym Miski Oglu, Tobias Klaus

@ Lanzhou University: Weihua Zhang, Xiaodong Zhang, Jiongning Che

Classical Billiards with Integrable & Chaotic Dynamics

Rectangular billiard (integrable)

Africa billiard (chaotic)

- Particle moves freely within the billiard along straight lines with constant velocity and is reflected specularly at boundary
- Classical dynamics is determined by the shape of the billiard
- \rightarrow Paradigm model for studies in the field of quantum chaos
- Central question in quantum chaos:

How does the regular or chaotic behaviour of the classical dynamics manifest itself in the corresponding quantum system?

One Aspect of Quantum Chaos: Statistical Properties of the Eigenstates

- Nonrelativistic Quantum Systems
- Berry-Tabor Conjecture: The spectral fluctuation properties of generic integrable systems coincide with those of uncorrelated random numbers from a Poisson process
- Bohigas-Gianonni-Schmit Conjecture (1984) [Casati et al. (1980)]: The spectral fluctuation properties of generic classically chaotic quantum systems with preserved / violated time-reversal invariance coincide with those of random matrices from the Gaussian Orthogonal (GOE) / Gaussian Unitary (GUE) Ensemble
- Relativistic Quantum Systems
- \rightarrow Question: Do the conjectures apply to relativistic neutrino billiards?
- \rightarrow Problem: NBs do not have a well-defined classical limit
- \rightarrow Semiclassical approach: Trace formula and Husimi functions

Wave Equation of Quantum Billiards

 Unfolding to energy-independent spectral density / mean spacing needed to identify universal fluctuation properties

• Weyl formula for QBs:
$$\overline{N}(k = \sqrt{E}) = N^{Weyl}(k) = \frac{A}{4\pi}k^2 - \frac{U}{4\pi}k + const.$$

Hanoi 2023 | Graphene Billiards and (Non-) Relativistic Quantum Billiards | 4

PCS Center for Theoretical Physics of Complex Systems

Dirac Equation for Neutrino Billiards Berry & Mondragon, Proc. R. Soc. Lond. A 412, 53 (1987)

Dirac equation for massive NB

$$\hat{H}_D \boldsymbol{\psi} = \left(c \boldsymbol{\hat{\sigma}} \cdot \boldsymbol{\hat{p}} + mc^2 \boldsymbol{\hat{\sigma}_z} \right) \boldsymbol{\psi} = E \boldsymbol{\psi}, \, \boldsymbol{\psi} = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

• BC requires that the outward current vanishes along boundary

$$\mathbf{n} \cdot \left[\boldsymbol{\psi}^{\dagger} \boldsymbol{\nabla}_{\boldsymbol{p}} \hat{\boldsymbol{H}}_{D} \boldsymbol{\psi} \right] = 0$$

- Complex-plane presentation: $w(s)=x(s)+iy(s), n=e^{i\alpha(s)}$
- BC links the spinor components at the boundary

$$\psi_2(s) = ie^{i\alpha(s)}\psi_1(s)$$

- The Dirac equation for neutrino billiards is not time-reversal invariant
- \Rightarrow The spectral properties of typical NBs with shapes of chaotic billiards agree with GUE

Hanoi 2023 | Graphene Billiards and (Non-) Relativistic Quantum Billiards | 5

Proc. R. Soc. Lond. A 412, 53 (1987)

Dirac Equation for Massive Neutrino Billiards

• The energy *E* is given in terms of the free space wavevector *k* as

$$E = \hbar c k_E = \hbar c k \sqrt{1 + \beta^2}, \ \beta = \frac{mc}{\hbar k}$$

• Define

$$\psi = \begin{pmatrix} \sqrt{\frac{1+\sin\theta_{\beta}}{2}}\tilde{\psi}_{1} \\ \sqrt{\frac{1-\sin\theta_{\beta}}{2}}\tilde{\psi}_{2} \end{pmatrix} \qquad \sin\theta_{\beta} = \frac{\beta}{\sqrt{1+\beta^{2}}} \qquad \text{nonrel. Limit } \Leftrightarrow \theta_{\beta} \to \pi/2 \\ \text{ultrarel. Limit } \Leftrightarrow \theta_{\beta} \to 0 \\ \tilde{\psi}_{\beta} \to 0 \qquad \tilde{\psi}_{\beta} \to 0 \end{pmatrix}$$

$$\Rightarrow k\tilde{\psi}(\boldsymbol{r}) + i\hat{\boldsymbol{\sigma}} \cdot \nabla \tilde{\psi}(\boldsymbol{r}) = 0 \quad \text{with} \quad \tilde{\psi}_2(s) = ie^{i\alpha(s)}\mathcal{K}^{-1}\tilde{\psi}_1(s) \qquad \mathcal{K} = \sqrt{\frac{1 - \sin\theta_\beta}{1 + \sin\theta_\beta}}$$

• The nonrelativistic limit $\beta \rightarrow \infty$ for fixed $\hbar k_{\max}$ complies with the BC

• Weyl formula:
$$\overline{N}(k=\sqrt{E})=N^{Weyl}(k)=\frac{A}{4\pi}k^2-\frac{U}{4\pi}k+const.$$

Statistical Measures for the Spectral Fluctuations

- Short-range correlations:
- NNSD: distribution of the spacings between adjacent levels
- Integrable systems:

$$P^{\rm Poi}(s) = e^{-s}$$

Chaotic systems:

Distribution of the ratios of two consecutive spacings of nearest-neighbors

Poisson: $P_0(r) = 1/(1+r)^2$

GEs:
$$P_W(r) = \frac{1}{Z_\beta} \frac{(r+r^2)^\beta}{(1+r+r^2)^{1+(3/2)\beta}}$$

- Long-range correlations:
- Number variance $\Sigma^2(L)$: $\Sigma^2(L) = \langle N(L) \langle N(L) \rangle \rangle^2 >$

Spectral Properties of the Rectangular & Africa NB & QB

- The spectral properties of the rectangular QB & NB coincide with Poisson
- Africa $QB \rightarrow GOE$
- Africa NB \rightarrow GUE

Graphene

- Near each corner of the first hexagonal Brillouin zone the electron energy ω exhibits a linear dependence on the quasimomentum q
- Close to the diabolical ('Dirac') points the band structure is described by the Dirac equation of massless fermions

$$\pm \begin{pmatrix} 0 & \partial_x - i\partial_y \\ \partial_x + i\partial_y & 0 \end{pmatrix} \begin{pmatrix} \Psi_A \\ \Psi_B \end{pmatrix} = i \frac{\omega - \omega_D}{v_F} \begin{pmatrix} \Psi_A \\ \Psi_B \end{pmatrix}$$

• Independent contributions from K_+ and K_- valleys \Rightarrow 4D Dirac equation

Graphene Billiards

Qualitative and quantitative insight is obtained with the tight-binding model

$$\hat{\mathcal{H}}_{ij}^{TBM} = t_0 \delta_{ij} + t_1 \delta(|\mathbf{r}_i - \mathbf{r}_j| - d_0) + t_2 \hat{\delta}(|\mathbf{r}_i - \mathbf{r}_j| - d_1) + \dots$$

- Assumption: interaction of the graphene p_z orbitals non-negligible for 1st, 2nd and 3rd nearest neighbors
- Electrons cannot escape from a graphene flake ↔ Dirichlet BCs along the 1st missing row of atoms outside sheet

Spectral Density of the Africa Graphene Billiard

- Close to the band edges, GBs are described by the non-relativistic Schrödinger equation of the corresponding QB
- Around the Dirac points GBs are described by the Dirac equation of massless fermions
- The van Hove singularities border the Schrödinger and the Dirac region

Spectral Properties of Graphene & Quantum Billiard around Lower Band Edge

• Fluctuating part of integrated resonance density vs. eigenvalues k_s of QB

$$N_{fluc}(k) = N(k) - N_{smooth}(k)$$

- Length spectrum $| ilde{
 ho}(l) | = | \int_{0}^{k_{max}} \mathrm{d}k e^{ikl}
 ho_{fluc}(k) |$
- Very good agreement between GB and QB

Intensity and Momentum Distributions Around Dirac Frequency

$$\tilde{\psi}_n(q_x, q_y) = \iint_{\Omega} dx dy \psi_n(x, y) e^{-i\boldsymbol{q}\boldsymbol{r}}$$

• Momentum distributions are peaked at the K_{\pm} points of the band structure

Hanoi 2023 | Graphene Billiards and (Non-) Relativistic Quantum Billiards | 13

 (q_x,q_y)

Spectral Properties Africa and Rectangular GBs

- In the Africa-shaped GB the nongeneric edge states had to be excluded
- Reason for deviations from GUE as in the NB: scattering at the boundaries induces mixing of the 2D Dirac equations

Distributions of Ratios of Nearest and Next-Nearest Eigenvalue Spacings

- At the van Hove singularity the DOS has a logarithmic singularity ⇒ unfolding becomes cumbersome
- Compute ratio distributions using *all* eigenvalues
- \rightarrow Spectral properties of GB coincide with those of QB in all energy ranges
- Do the spectral properties of GBs only depend on its shape?

15° Circle Sector Graphene Billiard [PRE94, 062214(2016)]

 With increasing energy the lattice structure starts to prevail leading to the occurrence of the van Hove singularities in the spectral density and the Dirac point → Spectral Properties of relativistic quantum billiards?

Spectral Properties of Massive Half-Circle NB

- Spectral properties of the QB agree with Poisson
- Spectral properties of the NB: m=0 (m=0), 10, 20, 50, 100 \rightarrow QB
- Contributions of diameter orbit are extracted by employing its trace formula
- Spectral properties are close to GOE for m=0 and to that of the QB for $m\geq 100$

Billiards with a *M*-fold Rotational Symmetry

- Boundary with *M*-fold rotational symmetry: $w\left(\varphi + \lambda \frac{2\pi}{M}\right) = e^{i\lambda \frac{2\pi}{M}}w(\varphi)$
- Rotation operator in terms of angular momentum operator: $\hat{R} = e^{i\frac{2\pi}{M}\hat{L}}$
- Symmetry-projected eigenstates of the QB

$$\hat{R}^{\lambda}\psi_{m}^{(l)}(r,\varphi) = \psi_{m}^{(l)}\left(r,\varphi - \frac{2\pi}{M}\lambda\right) = e^{il\frac{2\pi}{M}\lambda}\psi_{m}^{(l)}(r,\varphi) \quad \lambda, l=0,1,2,\ldots,M-1$$

• Apply time-reversal operator:

$$\hat{\mathcal{C}}\psi_m^{(l)}\left(r,\varphi - \frac{2\pi}{M}\lambda\right) = e^{-il\frac{2\pi}{M}\lambda} \left[\psi_m^{(l)}(r,\varphi)\right]^* = e^{i(M-l)\frac{2\pi}{M}\lambda} \left[\psi_m^{(l)}(r,\varphi)\right]^*$$

- States with *l*=0, *M* / 2 are real. *T*-invariance implies that *l*, *M*-*l* are degenerate doublets
- The spinor eigenfunctions of the NB may be separated into symmetryprojected eigenstates but components belong to different symmetry classes

$$\hat{R}\psi_{1,m}(\boldsymbol{r}) = e^{il\frac{2\pi}{M}}\psi_{1,m}(\boldsymbol{r})$$
$$\hat{R}\psi_{2,m}(\boldsymbol{r}) = e^{i(l-1)\frac{2\pi}{M}}\psi_{2,m}(\boldsymbol{r})$$

Graphene Billiards with 3fold Symmetry

$$\hat{\mathcal{H}}_{TBM} = \begin{pmatrix} \hat{H} & \hat{V} & \hat{V}^{T} \\ \hat{V}^{T} & \hat{H} & \hat{V} \\ \hat{V} & \hat{V}^{T} & \hat{H} \end{pmatrix} \longrightarrow \hat{U}^{\dagger} \hat{\mathcal{H}}_{TB} \hat{U} = \begin{pmatrix} \hat{H}^{TB(0)} & 0_{N} & \hat{0}_{N} \\ \hat{0}_{N} & \hat{H}^{TB(1)} & \hat{0}_{N} \\ \hat{0}_{N} & \hat{0}_{N} & \hat{H}^{TB(2)} \end{pmatrix} \longrightarrow \hat{H}^{TB(1)} = \hat{H} + e^{i\frac{2\pi}{3}} \hat{V} + e^{i\frac{4\pi}{3}} \hat{V}^{T} \\ \hat{H}^{TB(2)} = \hat{H} + e^{i\frac{4\pi}{3}} \hat{V} + e^{i\frac{2\pi}{3}} \hat{V}^{T}$$

- $\hat{H}^{TB(0)}$ is real and $\hat{H}^{TB(1)}$, $\hat{H}^{TB(2)}$ are complex conjugate to each other with same eigenvalues
- The DOSs of complete spectrum, singlets and doublets are similar

Intensity Distributions for GB around Lower Band Edge & Quantum Billiard

• Analogy between the eigenstates of the GB and QB holds up to *n*=150

Wave Functions and Momentum Distributions of the Graphene Billiard at the Dirac Point

- For *l*=1,2 the valley states at the K₊ & K₋ points are excited selectively depending on *l* ⇒ no intervalley scattering at boundary!
- Note: Spectral properties of GBs coincide with those of QBs because of valley mixing

Intensity Distributions for GB around the Dirac Point & Neutrino Billiard

Spectral Properties of the C₃ GB, QB & NB

• Spectral properties for mass m=0, m=50, m=100 (100), and for the QB

- Non-generic orbits manifest themselves as slow oscillations in $N^{fluc}(k)$
- \rightarrow After extraction agreement with RMT predictions is good

Spectral Properties of the C₃ GB, NB & QB

- GB & QB: spectral properties of the singlets (doublets) coincide with GOE (GUE) statistics
- For the NB the spectral properties of the singlets and doublets coincide with GUE

Graphene Billiards with 4fold Symmetry

- $\hat{H}^{TB(0)} \& \hat{H}^{TB(2)}$ are real and $\hat{H}^{TB(1)} \& \hat{H}^{TB(3)}$ are complex conjugate to each other with same eigenvalues
- The DOSs of complete spectrum, singlets and doublets are similar

Wave Functions and Momentum Distributions of the C₄ Graphene Billiard

 The band structure of propating modes exhibits 12 saddle points and 12 Dirac points

Spectral Properties of the C₄ QB, NB & GB

• Spectral properties of GB agree with those of QB

Quantum Billiards and Microwave Billiards

 Experimental determination of the eigenvalues and wave functions of quantum billiards with microwave billiards

Quantum billiard

Microwave billiard

$$(\Delta + k^2) E_z = 0, E_z|_{\partial\Omega} = 0$$

resonance frequency f

electric field strength E_z

PCS Center for Theoretical Physics of Complex Systems

Superconducting Dirac Billiards BD et al., PRB 91, 035411 (2015), PRL 116, 023901 (2016)

- For the photonic crystal ~ 900 cylinders are milled out of a brass plate
- Basin and lid are covered with lead
- Lead is superconducting below $T_c=7.2 \text{ K} \rightarrow \text{high } Q$ value at $T_{LHe}=4 \text{ K}$
- Height $h = 3 \text{ mm} \rightarrow 2D$ system for f < c/2h = 50 GHz

Density of States (DOS) of the Complete Measured Spectrum

- The DOS exhibits two Dirac points framed by van Hove singularities that are separated by a band gap and a nearly flat band
- Occurrence of the flat band cannot be explained with a honeycomb-based tight-binding model

Electric-Field Intensity Distributions Below, Inside & Above the FB

Hanoi 2023 | Graphene Billiards and (Non-) Relativistic Quantum Billiards | 31

Center for Theoretical Physics of Complex Systems

Fit of TBM for Honeycomb-Kagome Lattice to Experimental DOS

- Lattice = combination of honeycomb and kagome sublattices
- Tight-binding Hamiltonian

$$\hat{\mathcal{H}}_{ij}^{TBM} = t_0 \delta_{ij} + t_1 \delta(|\mathbf{r}_i - \mathbf{r}_j| - d_0) + t_2 \hat{\delta}(|\mathbf{r}_i - \mathbf{r}_j| - d_1) + \dots$$

 Spectral properties and electric-field distributions are well described by the honome-based TBM with up to 6th n.n. hopping

Intensity Distributions of Honome & Dirac Billiard [Weihua Zhang & BD, PRB 104, 064310 (2021)]

 The electric-field distributions of the microwave photonic crystal are well reproduced by the HB

Ratio & k=1 Overlapping Ratio Distributions of all eigenvalues of the Dirac & Honome Billiard

Hanoi 2023 | Graphene Billiards and (Non-) Relativistic Quantum Billiards | 34

Center for Theoretical Physics of Complex Systems Thank you

for

your attention

Transmission Spectrum of Rectangular Dirac Billiard at 4 K

Measurement Principle

• Measurement of the scattering matrix element S_{21}

positions of the resonances $f_n = k_n c/2\pi$ yield eigenvalues

Graphene & Honome Billiards with 3fold Symmetry

$$\hat{\mathcal{H}}_{TBM} = \begin{pmatrix} \hat{H} & \hat{V} & \hat{V}^{T} \\ \hat{V}^{T} & \hat{H} & \hat{V} \\ \hat{V} & \hat{V}^{T} & \hat{H} \end{pmatrix} \longrightarrow \hat{U}^{\dagger} \hat{\mathcal{H}}_{TB} \hat{U} = \begin{pmatrix} \hat{H}^{TB(0)} & 0_{N} & \hat{0}_{N} \\ \hat{0}_{N} & \hat{H}^{TB(1)} & \hat{0}_{N} \\ \hat{0}_{N} & \hat{0}_{N} & \hat{H}^{TB(2)} \end{pmatrix} \longrightarrow \hat{H}^{TB(1)} = \hat{H} + e^{i\frac{2\pi}{3}} \hat{V} + e^{i\frac{4\pi}{3}} \hat{V}^{T} \\ \hat{H}^{TB(2)} = \hat{H} + e^{i\frac{4\pi}{3}} \hat{V} + e^{i\frac{2\pi}{3}} \hat{V}^{T}$$

- $\hat{H}^{TB(0)}$ is real and $\hat{H}^{TB(1)}$, $\hat{H}^{TB(2)}$ are complex conjugate to each other with same eigenvalues
- The DOSs of complete spectrum, singlets and doublets are similar

Wave functions of the Massive Neutrino Billiard

- For $m \to \infty$ the wave function components $\psi_{1,2}$ decouple and $|\psi_2 / \psi_1| \to 0$
- The nodal-line structure of the singlets becomes discernible because $Im(\psi_{1,2}) \rightarrow 0$
- The intensity distributions of the doublets become similar
- The wave functions approach those of the QB

Unfolding of Spectra

- Integrated spectral density N(E) = # levels below E
- Decompose into a smooth and a fluctuating part

$$N(E) = \overline{N}(E) + N^{fluc}(E)$$

• Replace eigenvalues E_i by the smooth part of the integrated spectral density

$$e_i = \overline{N}(E_i)$$

• Quantum billiard / Microwave billiard:

Weyl formula:
$$\overline{N}(k = \sqrt{E}) = N^{Weyl}(k) = \frac{A}{4\pi}k^2 - \frac{U}{4\pi}k + const.$$

Dirac Equation for Massive Neutrino Billiards

• The energy *E* is given in terms of the free space wavevector *k* as

$$E = \hbar c k_E = \hbar c k \sqrt{1 + \beta^2}, \ \beta = \frac{mc}{\hbar k}$$

• The nonrelativistic limit $k\beta \rightarrow \infty$ complies with the BC

$$\psi = \begin{pmatrix} \sqrt{\frac{1+\sin\theta_{\beta}}{2}}\tilde{\psi}_{1} \\ \sqrt{\frac{1-\sin\theta_{\beta}}{2}}\tilde{\psi}_{2} \end{pmatrix} \quad \sin\theta_{\beta} = \frac{\beta}{\sqrt{1+\beta^{2}}} \cdot \quad \text{nonrel. Limit } \Leftrightarrow \theta_{\beta} \to \pi/2$$
$$\text{ultrarel. Limit } \Leftrightarrow \theta_{\beta} \to 0$$
$$\Rightarrow k\tilde{\psi}(r) + i\hat{\sigma} \cdot \nabla \tilde{\psi}(r) = 0 \quad \text{with } \tilde{\psi}_{2}(s) = ie^{i\alpha(s)}\mathcal{K}^{-1}\tilde{\psi}_{1}(s) \quad \mathcal{K} = \sqrt{\frac{1-\sin\theta_{\beta}}{1+\sin\theta_{\beta}}}$$

• The resulting Dirac equation has the same form as for massless neutrino billiards [Berry & Mondragon, Proc. R. Soc. London A **412**, 53 (1987)]

• Weyl formula:
$$\overline{N}(k = \sqrt{E}) = N^{Weyl}(k) = \frac{A}{4\pi}k^2 - \frac{U}{4\pi}k + const.$$

Hanoi 2023 | Graphene Billiards and (Non-) Relativistic Quantum Billiards | 41

Center for Theoretical Physics of Complex Systems

Experimental DOS and Topology of Band Structure

- Each resonance frequency f in the experimental DOS $\rho(f)$ is related to an isofrequency line of the band structure in quasimomentum (q) space
- Band edges: isofrequency lines form circles around the Γ point
- Sharp peaks: at frequencies of the saddle (M) points
- Broad minimum: at frequency of the Dirac (K) points

Part III

Experiments with Superconducting Microwave Resonators Simulating Artificial Fullerene

B. Dietz, T. Klaus, M. Miski-Oglu, A. Richter, M. Wunderle M. Bischoff, L. von Smekal, J. Wambach

Curved Graphene: Artificial Fullerene

- Curvature is introduced into graphene by replacing hexagons by pentagons
- Spherical fullerene molecules posses 12 pentagons
- Fullerene C₆₀ (`Buckyball') consists of 12 pentagons and 20 hexagons arranged on a truncated icosahedron
- Low-energy electronic excitations are described by a Dirac equation on a sphere

Construction of Fullerene from a Plane Graphene Sheet

- To introduce the 12 pentagons, $\pi/3$ sectors are cut out and glued together
- Cones are created with the pentagon at the apex
- Transformation from a plane to a sphere implies changes in Dirac equation
- Mixing of the sublattices along the seam is accounted for by a gauge field A_{μ} producing a flux due to a magnetic monopole at the center of the fullerene
- The coordinate transformation associated with the curvature is accounted for by a quasi-spin connection Q_{μ}

Dirac Operators for Plane Graphene and Spherical Fullerene

• Dirac operator for plane graphene around the Dirac point

$$H_{\pm} = \pm v_F \, \sigma^{\alpha} q_{\alpha}, \, \alpha = x, y$$

• Dirac operator for spherical fullerene around the Dirac point

- Aim: experimental verification of the Atiyah-Singer index theorem
- Relates the topology of the carbon lattice to the number of zero modes, i.e., of eigenvalues of the Dirac operator at the Dirac point
- Plane graphene with periodic B.C.: no zero modes expected
- Spherical fullerene: a pair of triplets of (near) zero modes expected

Construction of the Superconducting Fullerene Microwave Billiard

- The structure of C_{60} was milled out from a brass ball and lead plated
- 60 circular cavities with radius 12 mm at the vertices of the truncated icosahedron
- 90 channels with width 14 mm at the edges of the truncated icosahedron
- Cut-off frequency of 1st (2nd) propagating mode: $f_c^{1} \ge 10.714 \text{ GHz} (f_c^{2} \ge 20.232 \text{ GHz})$
- All cavities / channels closed with triangular / rectangular plates
- Red caps mark antenna ports (altogether 8)
- 28 transmission spectra were measured

Construction of the Superconducting Fullerene Microwave Billiard

- The structure of C_{60} was milled out from a brass ball and lead plated
- 60 circular cavities with radius 12 mm at the vertices of the truncated icosahedron
- 90 channels with width 14 mm at the edges of the truncated icosahedron
- Cut-off frequency of 1st (2nd) propagating mode: $f_c^{1} \ge 10.714$ GHz ($f_c^{2} \ge 20.232$ GHz)
- All cavities / channels closed with triangular / rectangular plates
- Red caps mark antenna ports (altogether 8)
- 28 transmission spectra were measured

Construction of the Superconducting Fullerene Microwave Billiard

- The structure of C_{60} was milled out from a brass ball and lead plated
- 60 circular cavities with radius 12 mm at the vertices of the truncated icosahedron
- 90 channels with width 14 mm at the edges of the truncated icosahedron
- Cut-off frequency of 1st (2nd) propagating mode: $f_c^{1} \ge 10.714$ GHz ($f_c^{2} \ge 20.232$ GHz)
- All cavities / channels closed with triangular / rectangular plates
- Red caps mark antenna ports (altogether 8)
- 28 transmission spectra were measured

Spectrum of the Fullerene Billiard [BD et al., PRL 115, 026801 (2015)]

- Band 1: centered around 1st (J_0) mode of open circular billiard and below $f_c^1 \rightarrow$ modes in cavities weakly coupled to neighbors
- Band 2: centered around $2nd (J_1)$ mode of open circular billiard and above $f_c^{1} \rightarrow$ mimicks a situation with an extra atom between neighboring C atoms
- Band 3: centered around 3rd (J₂) mode of open circular billiard and below $f_c^2 \rightarrow$ for symmetry reasons only 90 resonances
- Only the 1st band models the situation in C_{60}

Band 1

- Spectrum grouped into 15 multiplets and multiplicities agree with group theoretical predictions for the truncated icosahedral structure
- The degeneracies are lifted due to inhomogeneities of lead coating, i.e., changes in radii of cavities
- Dirac frequency is expected at the center of the first band, because of symmetry considerations (Manousakis PRB **44**,10991 (1991))
- There the Atiyah-Singer index theorem predicts 6 zero modes in the thermodynamic limit of an infinite number of C atoms

Zoom into Region Around the Center of Band 1

- Two triplets of nearly degenerate resonances
- Triplets correspond to resonances closest to the center of the spectrum
- → (near) zero modes predicted by Atiyah-Singer index theorem for a finite-size system?
- We corroborated this by matching the TBM to the experimental DOS and extrapolating it to larger fullerene molecules
- Agreement between experimental and calculated DOS best when including 1st, 2nd and 3rd nearest-neighbor couplings

Extrapolation of TBM Computations to Larger Fullerene Molecules

- N=60, 240, 540, 720
- DOS for C_n resembles more and more the DOS of the rectangular Dirac billiard with periodic boundary conditions
- One important difference: DOS of fullerene exhibits a peak at f_D due to the 2 triplets of (near) zero modes, that of graphene vanishes there

Central Frequency of Each Triplett Versus the Number *n* of C atoms

With increasing *n* the triplet frequencies converge towards the Dirac frequency *f_D* = 8.504 GHz
 → verifies the Atiyah-Singer theorem

