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Self-propelled particles (SPP) are active particles that take up
energy from the environment and utilize some of the energy in
directed motion allowing them to explore their surroundings
[1]. One way of studying the statistical behavior of these
particles is through the run-and-tumble movement. Statistical
properties such as probability distributions with and without
diffusion terms and first passage properties of these active
particles were investigated in the previous studies [2-3].
However, the effects of death on the first passage properties
were not considered. For example, Escherichia coli bacteria are
self-propelling particles that move in a run-and-tumble way in
order for them to navigate in search of food or nutrients and
move away from chemical toxins [4]. These microorganisms
may die in a process called programmed cell death (PCD), where
the death of a cell happens as a result of events inside of it [5].
With this motivation, we define evanescent self-propelling
particles as active particles that may die, decay, or disappear
while moving towards or away from the boundaries. In this
study, we investigate the effect of evanescence or mortality on
the statistical properties of self-propelling particles moving in a
run-and-tumble manner. We obtained the occupational
probability in the Laplace space and the first passage
characteristics of evanescent run-and-tumble particle systems
under spatially symmetric and partially absorbing or reflecting
boundaries.

We consider an evanescent run-and-tumble particle that runs
with velocity v, tumbles with rate α, and dies or evanesces with a
rate λ. The system is confined to a partially reflecting (partially
absorbing) region a ≤ x ≤ b [6]. We represent the probability
density function (PDF) for the right-oriented and left-oriented
particles as PR(x, t) and PL(x, t) respectively

From equations (1) and (2), the following steps are done, as
shown in Figure 1, to obtain the probability distribution and
conditional mean first passage time:
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Figure 1: Schematic representation for obtaining the statistical properties

Figure 2: Plot of the absorption probability ε against length L with 
different values of death rate at constant speed v.

Figure 3: Conditional mean first passage time at constant 
velocity

The eventual absorption probability of
the evanescent run-and-tumble particle
decreases as the death rate increases.
This is because only a portion of the
particles will successfully reach the
boundaries as some will die or decay or
disappear while in motion.

The obtained expression for the
conditional mean first passage time of
evanescent run-and-tumble particles
when the boundaries are symmetric, a =
−b = L is given by

Here, we consider an equal and spatially symmetric boundary case where a = −b, ϵa =
ϵb = ϵ, and v(x) = v(-x). The generating function is
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the eventual absorption probability is
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with  𝑐2 = 𝜆(𝛼 + 𝜆).

For symmetric boundaries where a = −b and ϵa = ϵb = ϵ, we derived the eventual
absorption probability and the conditional mean first passage time for both uniform
and exponentially increasing speeds. We observed that in both cases, there is a
decrease in the eventual absorption probability as the death rate increases. Due to
the decrease in value, we can say that not all evanescent run-and-tumble particles
reached the boundaries, and some of them may have already died/decayed or
disappeared. This gives us the information that the evanescent particles’ success in
reaching either or both walls happens at a decreasing time rate.
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The eventual absorption probability of 
the particle when v(x) = v0 is given by

The plot shows the decrease in the value
of the conditional mean first passage
time as the death rate increases. This
means that evanescent run-and-tumble
particles must move intelligently toward
the boundary in order to escape death.

Figure 4: Conditional mean first passage time of evanescent run-
and-tumble particles with an exponential form of speed as a 
function of length L and with different values of death rate λ

The plot shows the conditional mean
first passage time as a function of
length L, constant γ, and an increasing
value of death rate λ.

As the death rate increases, the time for
the particle to reach the boundary
decreases. The plot reflects that there is
a much longer time for particles to reach
the boundary at lower values of the
death rate.


