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1 Introduction and Motivation

The first question any intelligent student would ask at the beginning of a series of lectures
on supersymmetry (susy) is why speculate at all about going beyond the Standard Model
(SM), unless (or until) an experiment forces us to? Yet, in the lectures on the SM by
G. Bhattacharyya and M. Boonekamp, you were told that since its discovery, the SM
has had tremendous experimental successes, like no other theory before. So if the SM is
not broken, why try to fix it? In other words, why spend so much time† learning all this
intricate susy formalism? A true theorist would certainly answer: “Why not? Just for the
fun of it!”. As a phenomenologist (who by definition is interested in phenomena), I would
rather say “because the SM is not that perfect after all, in spite of what G. Bhattacharyya
told you!”. Indeed, although the SM (suitably extended to include neutrino masses) works
remarkably well below the TeV scale, it has a weak point: the Higgs sector. In addition
of playing hide-and-seek with experimentalists, theorists soon discovered that this sector
was suffering from an extreme sensitivity to physics at energies above the TeV scale (the
so-called “hierarchy problem”), questioning the validity of the SM above this scale. For
this reason the SM is now believed to be only an effective theory at low energy and it
is commonly agreed that some new physics should appear at or above the TeV scale.
This is precisely the scale that the LHC will probe, so we better get ready to explain
new phenomena that will undoubtedly appear as soon as it starts colliding protons (cf.
lectures by M. Boonekamp on this subject)! As for today, susy is certainly the most
studied candidate to extend the SM up to extremely high energy scales, such as the
Planck scale MPlanck = G

−1/2
Newton ≃ 1.2×1019 GeV (where we know that gravity comes into

play which cannot be accounted for by quantum field gauge theories). The main reason
for this is that susy technically solves the hierarchy problem. There are other purely
theoretical motivations for susy as well as quantitative indications on which we will come
back in due time, but let us start by the hierarchy problem.

1.1 The Hierarchy Problem

Recall the potential for the neutral component of the SM Higgs SU(2) doublet:

V (H) = µ2|H|2 + λ|H|4 . (1.1)

If µ2 < 0 the electroweak symmetry is spontaneously broken and the Higgs field develops
a vacuum expectation value (vev):

〈H〉 =

√
−µ2

2λ
≡ v√

2
, (1.2)

which in turn gives a mass to the Higgs field as well as to the weak gauge bosons (through
gauge couplings g, g′) and charged fermions (through Yukawa couplings λf ):

m2
H = 2λv2 , m2

W =
1

4
g2v2 , m2

Z =
1

4
(g2 + g′2)v2 , m2

f =
1

2
λ2
fv

2 . (1.3)

†We will actually only spend 6 hours together, which is a very short time to learn susy phenomenology.
The curious student will easily find very good reviews on the subject [1–4]. A few books have also recently
been published [5–9]. Refs. [1, 5] are especially well suited for the beginners. All the necessary references
on susy (shamelessly not cited in these lectures) will be found therein.
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We know from experimental measurements of the weak interaction properties that v ≃
246 GeV (often called weak scale, Mweak). If λ is to remain perturbative (. 1) up to a
high energy cut-off Λ, this implies that mH . 1 TeV depending on Λ. The same bound
on the SM Higgs mass is obtained if one wants the WW → WW diffusion process to
remain unitary at high energy.

H H

H

λ

(a)

H H

f̄

f

λf λf

(b)

H H

W±/Z0

g

(c)

Figure 1.1: One loop quantum corrections to the Higgs squared mass parameter m2
H , due

to (a) the Higgs self interaction, (b) a Dirac fermion f and (c) a weak gauge boson.

However, the mass term for the Higgs boson is subject to potentially huge radiative
corrections. Taking into account the one loop corrections due to the Higgs self interaction
of fig. 1.1(a), one gets:

δm2
H = λ

∫ Λ d4k

(2π)4

1

k2 −m2
H

=
λ

16π2

(
Λ2 − 2m2

H ln

(
Λ

mH

)
+ . . .

)
. (1.4)

If we take as our high energy cut-off Λ = MPlanck, then mH . 1 TeV requires to start
with an equally huge value of the parameter µ2 appearing in the potential (1.1), relying
on a remarkable cancellation – or fine-tuning – between the tree level mass (1.3) and
the quadratically divergent one loop corrections (1.4). Furthermore, these cancelations
have to be repeated at each order in perturbations. Although technically possible, this
is regarded as highly unnatural and is called the hierarchy problem: the presence of a
fundamental scalar in the SM tends to destabilise the hierarchy between the scale Mweak

and a high energy cut-off.
The attentive reader might object that this is an artefact of the regularization scheme

used to renormalise m2
H . Indeed, using dimensional regularization instead of a Pauli-

Villars cut-off, we find no quadratic divergences from the diagram of fig. 1.1(a)! However,
let suppose we have some new physics – say a grand unified theory – at a high energy scale
MGUT ∼ 1016 GeV, containing massive states ∼ MGUT. Then, these states will circulate
in the loops of similar diagrams as in fig. 1.1 and the radiative corrections to the Higgs
mass will diverge quadratically as a function of MGUT.

Why such divergences only seem to affect the scalar sector of the SM? For more sim-
plicity, let us consider Quantum Electrodynamics (QED). The photon self-energy diagram
of fig. 1.2 is apparently quadratically divergent. As in the scalar case, such a quadratic
divergence would imply an enormous quantum correction to the photon mass (which has
to remain zero):

δm2
γ ∼ α

∫ Λd4k

k2
∼ αΛ2 . (1.5)

But in fact this divergence is absent provided the theory is regularized in a gauge invariant
way. In other words, gauge symmetry guarantees that no term of the form:

m2
γAµA

µ (1.6)
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can be radiatively generated in an unbroken gauge theory: the photon remains massless.
The diagram of fig. 1.2(a) is divergent, but only logarithmically. The divergence is ab-
sorbed in a field strength renormalization constant, and is ultimately associated with the
running of the fine structure constant α. The same mechanism happens in the SM, al-
though things are a bit more complicated (as the gauge symmetry of the SM is non-abelian
and spontaneously broken).

γ γ

e+

e−

√
α

√
α

(a)

e− e−
√
α

√
α

γ

(b)

Figure 1.2: One loop self-energies in QED for (a) the photon, (b) the electron.

We may also consider the electron self energy diagram of fig. 1.2(b). This produces a
correction to the electron mass which seems to vary linearly with the cut-off:

δm ∼ α

∫ Λ d4k

6kk2
∼ αΛ . (1.7)

Though perhaps not so bad as a quadratic divergence, such a linear one would still lead to
unacceptable fine-tuning in order to arrive at the physical electron mass. In fact, however,
when the calculation is done in detail one finds:

δm ∼ αm lnΛ , (1.8)

so that even if Λ ∼ 1019 GeV, we have δm ∼ m and no unpleasant fine-tuning is necessary
after all.

Why does it happen in this case that δm ∼ m? It is because QED (and the SM
for that matter) has an extra symmetry as the electron mass goes to zero, namely chiral
symmetry. This is the symmetry under transformations on fermion fields of the form:

ψ → eiαγ5ψ (1.9)

in the U(1) case, or
ψ → eiαaTaγ5ψ (1.10)

in the general SU(N) case. This symmetry guarantees that all radiative corrections to m,
computed in perturbation theory, will vanish as m→ 0. Hence δm must be proportional
to m, and the dependence on Λ is therefore (from dimensional analysis) only logarithmic.

In these two examples from QED, we have seen how unbroken gauge and chiral sym-
metries protect gauge boson and fermion masses from potentially dangerous quadratic
and linear divergences. If we could find a symmetry which grouped scalar particles with
either fermions or gauge bosons, then the fundamental scalars would enjoy the same pro-
tection from unwanted divergences. susy is precisely such a symmetry: it groups together
particles of different spins in supermultiplets.
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To see how susy works, let us come back to the one loop corrections to the Higgs mass.
Up to now we have only computed the contribution from the scalar loop of fig. 1.1(a)
(Higgs self interaction). Let us now compute the fermion loop contribution of fig. 1.1(b):

δm2
H = −λ2

f

∫ Λ d4k

(2π)4
Tr

[
1

k2 −m2
f

]
=

λ2
f

16π2

(
−2Λ2 + 6m2

f ln

(
Λ

mf

)
+ . . .

)
. (1.11)

Notice the sign difference compared with (1.4) due to fermion/boson different statistics.
Hence, provided one has:

1) a relation between the fermionic and bosonic couplings λ = λ2
f

2) an equal number of fermionic and bosonic degrees of freedom (1.12)

(a Dirac fermion has 4 degrees of freedom while a complex scalar has only 2)

the quadratic divergences cancel and we are left with:

δm2
H ∼ ∆m2 ln Λ , (1.13)

where ∆m2 is the mass difference between fermions and scalars. Of course the two con-
ditions (1.12) are not satisfied in the SM where we have just one fundamental scalar field
(the Higgs boson), plenty of Dirac fermions (quarks and leptons) and no link between
the Higgs self coupling and the fermion Yukawa couplings. We will see how the Minimal
Susy Standard Model (MSSM) guarantees these two conditions by doubling the number
of degrees of freedom of the SM, associating spin 1/2 Higgsinos and gauginos to the Higgs
and gauge bosons and spin 0 squarks and sleptons to the quarks and leptons.

1.2 Quantitative Indications

Here we state briefly four quantitative results of the MSSM, which together with the
technical solution to the hierarchy problem and the strong theoretical argument developed
in the next section, have inclined many physicists to take the model seriously. We shall
explore each in more detail in chapters 5 and 6.

• The precision fits to electroweak data show that mH is less than about 200 GeV, at
the 99% confidence level. The MSSM, which has three neutral Higgs states as we
shall see, predicts that the lightest one should be no heavier than about 140 GeV.
In the SM, one can certainly say, from (1.3), that if λ is not much greater than 1,
so that perturbation theory has a hope of being applicable, then mH can’t be much
greater than 1 TeV. This is not such a strong constraint however, at least not in
quite the same sense of a mathematical bound.

• In any renormalizable theory, the parameters in the Lagrangian depend on the
energy scale Q (they “run”). At one loop order, the inverse gauge couplings α−1

1 (Q),
α−1

2 (Q), α−1
3 (Q) of the SM run linearly with lnQ. Although α−1

1 decreases with lnQ,
and α−1

2 and α−1
3 increase, all three tending to meet at MGUT ∼ 1016 GeV, they do

not in fact meet convincingly in the SM. On the other hand, in the MSSM they do,
thus encouraging ideas of a Grand Unified Theory.
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• The mass parameters also run, just as the gauge coupling parameters do. In the
MSSM, the evolution of the Higgs squared mass parameter from a typical positive
value at the scaleMGUT, takes it to a negative value of the correct order of magnitude
at the scale Mweak, thus providing a possible explanation for the origin of electroweak
symmetry breaking (EWSB). Actually, this happens because the Yukawa coupling
of the top quark is large (being proportional to its mass), and this has a dominant
effect on the evolution of the Higgs squared mass parameter.

• Assuming an extra symmetry, called R-parity, the MSSM also provides a candidate
for Cold Dark Matter (see lectures by P. Gondolo and Sang Pyo Kim): the lightest
susy particle (LSP), which is stable with a mass ∼ 100 GeV and weak couplings to
SM particles. The latest WMAP results on Dark Matter relic density actually put
strong constraints on the MSSM parameters.

1.3 Theoretical Considerations

If one wants the first condition of (1.12) to hold at any order in perturbation theory,
it must result from some symmetry. Such a symmetry linking bosons and fermions, as
we already mentioned, is precisely what we call susy. But what are the normal (i.e.
non-super) symmetries of nature? They are of two kinds:

• External symmetries (Poincaré group). They transform a point in spacetime as:

x′µ = (δµν + ωµν)x
ν + aµ , (1.14)

where aµ is the (constant 4-vector) parameter of a translation and ωµν the (constant
antisymmetric tensor) parameter of an infinitesimal Lorentz transformation‡. They
correspond to unitary transformations acting on the quantum fields:

U(a) = eiaµPµ

, U(ω) = e−
i
2
ωµνMµν

, (1.15)

where P µ and Mµν are the (hermitian) generators of translations and Lorentz trans-
formations (resp.). We will come back to their algebra (ie their commutation rela-
tions) and representations in the next chapter.

• Internal symmetries (gauge groups). They act directly on the fields through unitary
transformations:

U(α) = eiαa(x)Ta

. (1.16)

The parameters αa(x) of the transformation depend on the spacetime coordinate.
The T a’s are the generators and they obey the commutation relations:

[T a, T b] = ifabcT
c , (1.17)

where fabc are called the structure constants of the corresponding algebra.

‡We work in four dimension Minkowski spacetime with a flat metric gµν = g
µν = diag(1,−1,−1,−1).
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The Coleman-Mandula theorem states that a Lie algebra containing the Poincaré
generators plus another Lie algebra must be the direct sum of the two. This implies that

[T a, Pµ] = [T a,Mµν ] = 0 , (1.18)

i.e. any new symmetry can only connect particles with the same mass and spin: this is
not what we want! Haag, Lopuszanski and Sohnius showed however that the Coleman-
Mandula theorem can be evaded if the generators of the new symmetry satisfy anticom-
mutation relations (this is called a graded algebra).

A susy transformation turns bosons into fermions and vice-versa:

Q|boson〉 = |fermion〉 , Q|fermion〉 = |boson〉 . (1.19)

The generator Q of a susy transformation must be of fermionic nature (i.e. an anticom-
muting spinor) and its hermitian conjugate Q† (also noted Q̄) is a distinct generator. It
can therefore have non-trivial commutation relations with the Poincaré generators. For
this reason, susy is regarded as the only non-trivial extension of the Poincaré group, i.e.
the most general symmetry of spacetime.

Since this is a symmetry, it must commute with the Hamiltonian of the system and
so does the anticommutator of two different components:

[Q,H ] = [{Q, Q̄}, H ] = 0 . (1.20)

We can guess that {Q, Q̄} transforms as a spin 1 object (because it is the combination
of two spin 1/2 objects) which should be described by a 4-vector. Further, according
to (1.20) this 4-vector is conserved. The Coleman-Mandula theorem implies that there is
only one such operator, namely Pµ:

{Q, Q̄} ∼ Pµ . (1.21)

Clearly, this is sloppy (the Lorentz indices don’t match!) but it captures the essence of
susy: its generators are square roots of translation operators, or square roots of derivatives!
It is worth pausing to take this in properly. Four-dimensional derivatives are firmly locked
to our notions of a four-dimensional spacetime. In now entertaining the possibility that we
can take square roots of them, we are effectively extending our concept of spacetime itself,
just as, when the square root of -1 is introduced, we enlarge the real axis to the complex
plane. That is to say, if we take seriously an algebra involving both Pµ and theQ’s, we shall
have to say that the spacetime coordinates are being extended to include further degrees of
freedom, which are acted on by the Q’s, and that these degrees of freedom are connected to
the standard ones by means of transformations generated by the Q’s. These new degrees
of freedom are, in fact, fermionic. So we may say that susy invites us to contemplate
“fermionic dimensions”, and enlarge spacetime to “superspace”. Unfortunately, we won’t
have time in these lectures to introduce superspace and superfields (but they usually are
in any textbook on susy).

One final remark on motivations: taking local instead of global susy transformations
(i.e. taking the parameter of a transformation dependent on the spacetime coordinate x
as in gauge symmetries) you get general coordinate changes, i.e. gravitation. This theory,
called supergravity (or sugra) is far beyond the scope of these lectures, although we will
use some of its general results in the MSSM.
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2 Representations of the Poincaré and Susy Algebras

2.1 Poincaré and Lorentz Algebras

The Poincaré group is the largest symmetry group of spacetime. It contains the Lorentz
transformations with six (antisymmetric) generators Mµν = −Mνµ obeying:

[Mµν ,Mρσ] = i(gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ) , (2.1)

where gµν is the flat metric. This commutation relation has actually the general form
of orthogonal transformations O(N) in a space with metric gµν . Because of the different
signs between time-like and space-like coordinates of Minkowski space, the Lorentz group
is noted O(3, 1). In addition we have translations, which four generators P µ commute
among themselves and transform as true 4-vectors:

[Pµ, Pν ] = 0 , [Mµν , Pρ] = i(gνρPµ − gµρPν) . (2.2)

The above commutation rules (2.1) and (2.2) can easily be derived by taking the differ-
ential operator form of the generators:

Pµ = i∂µ , Mµν = i(xµ∂ν − xν∂µ) . (2.3)

The Lorentz generators can be rewritten in the standard form of three rotations Ji
and three boosts Ki defined by:

M0i = Ki and Mij = ǫijkJk . (2.4)

The commutation rule (2.1) then splits as:

[Ji, Jj ] = iǫijkJk , [Ki, Kj] = −iǫijkJk , [Ji, Kj] = iǫijkKj . (2.5)

To identify the mathematical structure and to construct representations of this algebra
one introduces the linear combinations:

J±
j =

1

2
(Jj ± iKj) , (2.6)

in terms of which the algebra separates into two commuting SU(2) algebras:

[J±
i , J

±
j ] = iǫijkJ

±
k , [J±

i , J
∓
j ] = 0 . (2.7)

These generators are not hermitian however because of the i in (2.6), and we see that
the Lorentz group is a complexified version of SU(2) × SU(2): this group is Sl(2,C).
More precisely, Sl(2,C) is the universal cover of the Lorentz group, just as SU(2) is the
universal cover of SO(3). To see that this group is really Sl(2,C) is easy: introduce the
four 2 × 2 matrices σµ where σ0 is the identity matrix and σi, i = 1..3 are the three
Pauli matrices. Note that we always write the Pauli matrices with an upper index i,
while σ0 = σ0 and σi = −σi. Then for every 4-vector xµ the 2 × 2 matrix xµσ

µ is
hermitian and has determinant equal to xµxµ which is a Lorentz invariant. Hence a
Lorentz transformation preserves the determinant and the hermiticity of this matrix, and
thus must act as xµσµ → AxµσµA

† with | detA| = 1. We see that up to an irrelevant
phase, A is a complex 2× 2 matrix of unit determinant, i.e. an element of Sl(2,C). This
establishes the mapping between an element of the Lorentz group and the group Sl(2,C).
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2.2 Weyl, Dirac and Majorana Spinors

Spinors are the elementary non-trivial representations of the Lorentz group (trivial repre-
sentations being Lorentz invariant scalar fields). There are two non-equivalent fundamen-
tal representations of Sl(2,C) which decomposes into SU(2)× SU(2) called left and right
chiralities. The corresponding (two components) spinor fields are called Weyl spinors,
noted with dotted and undotted indices and labelled according to their eigenvalues for
(J+, J−):

ξα=1,2 ∈
(

1

2
, 0

)
≡ 2L , ξ̄α̇=1,2 ∈

(
0,

1

2

)
≡ 2R . (2.8)

The bar on the 2R spinor is not necessary as the dot on the index allows to distinguish
between the two types of spinors (note that this bar has nothing to do with the parti-
cle/antiparticle conjugation or the bar used in 4 component Dirac spinors!). However,
in susy indices are usually not written, so that the bar notation allows to tell in which
representation the spinor is.

In this representation Sl(2,C) matrices are represented by:

M =

(
a b
c d

)
, a, b, c, d ∈ C / detM = 1 . (2.9)

For a rotation of parameter θi and a boost of parameter ηi, we can explicitly display the
Sl(2,C) generators as the spin 1

2
representations of the complexified SU(2) × SU(2), in

accordance with (2.6):

M = eηiσ
i+iθiσ

i

M∗ = eηiσ
∗i−iθiσ

∗i

. (2.10)

Under a Lorentz transformation, we get:

ξα → ξ′α = Mα
β ξ

β , ξ̄α̇ → ξ̄′α̇ = M∗α̇
β̇
ξβ̇ . (2.11)

One can then identify (ξα)∗ ≡ ξ̄α̇ and (ξ̄α̇)∗ ≡ ξα. It proves useful to introduce the
antisymmetric two index tensors ǫαβ and ǫαβ :

ǫαβ = ǫα̇β̇ =

(
0 1
−1 0

)
, ǫαβ = ǫα̇β̇ =

(
0 −1
1 0

)
(2.12)

which are used to raise and lower indices as follows:

ξα = ǫαβξ
β , ξα = ǫαβξβ , ξ̄α̇ = ǫα̇β̇ ξ̄

β̇ , ξ̄α̇ = ǫα̇β̇ ξ̄β̇ . (2.13)

It is a Lorentz invariant: Mα
γM

β
δǫαβ = ǫγδ detM = ǫγδ. One can then easily check:

ξ′α = ǫαβξ
′β = ǫαβM

β
δξ
δ = ǫγδ(M

−1)γαξ
δ = (M−1T ) γ

α ξγ , (2.14)

which means that ξα transforms with M−1T . Similarly, ξ̄α̇ transforms with M−1†.
One can then form Lorentz invariant products:

ξ1χ1 + ξ2χ2 = ξαχα ≡ ξχ , ξ̄1̇χ̄
1̇ + ξ̄2̇χ̄

2̇ = ξ̄α̇χ̄
α̇ ≡ ξ̄χ̄ . (2.15)
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As a convention, when indices are not written, undotted indices are descending (α α) while
dotted indices are ascending ( α̇

α̇ ). Another convention is to reverse the order of spinors
when performing complex conjugation:

(ξχ)† = (ξαχα)
† = (χα)

∗(ξα)∗ = χ̄α̇ξ̄
α̇ = χ̄ξ̄ . (2.16)

Recall that fermionic degrees of freedom always anticommute (i.e. ξαχβ = −χβξa,
ξ̄α̇χ̄β̇ = −χ̄β̇ ξ̄α̇, etc...). With this in mind, one easily shows:

χξ = ξχ and χ̄ξ̄ = ξ̄χ̄ . (2.17)

We have seen how to form a Lorentz invariant (i.e. spin 0) object out of two spinors.
One can also obtain a spin 1 object using σµ matrices:

V µ = ξασµαα̇ξ̄
α̇ ∈

(
1

2
,
1

2

)
. (2.18)

the Pauli matrices, being hermitian, satisfy (σµ
αβ̇

)∗ = (σµ∗)α̇β = (σµ†)βα̇ = σµβα̇. One

introduces the σ̄µ defined by: σ̄µ α̇α = ǫα̇β̇ǫαβσµ
ββ̇

(σ̄0 ∼ σ0 and σ̄i ∼ −σi, but this is not

an equality: indices are not the same!). They have the following properties:

σµαα̇σ̄
β̇β
µ = 2δβαδ

β̇
α̇ , σµαα̇σµββ̇ = 2ǫαβǫα̇β̇ , σ̄µαα̇σ̄ββ̇µ = 2ǫαβǫα̇β̇ ,

σµαα̇σ̄
να̇β + σναα̇σ̄

µα̇β = gµνδβα , σ̄µα̇ασν
αβ̇

+ σ̄να̇ασµ
αβ̇

= 2gµνδα̇
β̇
, (2.19)

from which we deduce Tr(σµσ̄ν) = 2gµν and V µVµ = 2ξ2ξ̄2. Hence V µ is a true 4-vector
under Lorentz transformations. Other useful identities are:

χσµξ̄ = −ξ̄σ̄µχ , χσµσ̄νξ = ξσν σ̄µχ ,

(χσµξ̄)† = ξσµχ̄ , (χσµσ̄νξ)† = ξ̄σ̄νσµχ̄ ,

(χ1σ
µξ̄1)(χ2σµξ̄2) = 2(ξ1ξ2)(χ1χ2) (Fierz) . (2.20)

(The indices 1, 2 are not spinorial – they only denote different spinors). For a massive
Weyl spinor ξ, one can then form the Lorentz invariant Lagrangian:

L = iξ̄σ̄µ∂µξ −
m

2
(ξξ + ξ̄ξ̄) , (2.21)

and the Lorentz generators for the 2L, 2R representations can be written:

σµν β
α =

i

4
(σµαα̇σ̄

να̇β − σναα̇σ̄
µα̇β) , σ̄µνα̇

β̇
=
i

4
(σ̄µα̇ασν

αβ̇
− σ̄να̇ασµ

αβ̇
) (resp.). (2.22)

(Note that σ12 = σ̄12 = 1
2
σ3 which is the expected rotation generator).

A 4-componant Dirac spinor (the one you are used to) is formed of two Weyl spinors:

ψD =

(
χα
ξ̄α̇

)
∈
(

1

2
, 0

)
⊕
(

0,
1

2

)
(2.23)

One may introduce the following basis for gamma matrices, called the Weyl (or chiral)
basis:

γµ =

(
0 σµ

αβ̇

σ̄µα̇β 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, (2.24)
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for which we can check the usual relations:

{γµ, γν} = 2gµν , {γµ, γ5} = 0 , (γ5)2 = 1 , ... (2.25)

One defines the chiral projectors PL =
1 − γ5

2
and PR =

1 + γ5

2
. It is easy to check that

P 2
L = PL, P

2
R = PR, PLPR = 0 and PL + PR = 1. Hence, any Dirac spinor can be written

as the some of two chiral eigenstates:

ψD = ψL + ψR , where ψL = PLψD =

(
χα
0

)
and ψR = PRψD =

(
0
ξ̄α̇

)
, (2.26)

eigenstates of γ5 with eigenvalues −1 and +1 (resp.). The conjugate (or bar) spinor of
ψD is:

ψ̄D = ψ†
D

(
0 δα̇

β̇

δβα 0

)
= (ξβχ̄β̇) . (2.27)

(The matrix in (2.27) is similar to γ0 but the two component indices do not match). One
can then form the following Lorentz invariant bilinear products of two Dirac spinors ψ1,
ψ2 made out of Weyl spinors ξ1, χ1 and ξ1, χ1 (resp.) following the same notation as
in (2.23):

ψ̄1ψ2 = ξ1χ2 + χ̄1ξ̄2 = (ψ̄2ψ1)
† ,

ψ̄1γ
µψ2 = ξ1σ

µξ̄2 + χ̄1σ̄
µχ2 = (ψ̄2γ

µψ1)
† ,

ψ̄1γ
5ψ2 = −ξ1χ2 + χ̄1ξ̄2 = −(ψ̄2γ

5ψ1)
† ,

ψ̄1γ
µγ5ψ2 = ξ1σ

µξ̄2 − χ̄1σ̄
µχ2 = (ψ̄2γ

µγ5ψ1)
† (2.28)

and the Lorentz invariant Lagrangian for a Dirac spinor ψD defined as in (2.23) is:

L = iψ̄Dγ
µ∂µψD −mψ̄DψD = iξ̄σ̄µ∂µξ + iχ̄σ̄µ∂µχ−m(ξχ+ ξ̄χ̄) (2.29)

(note that the Weyl spinors propagate separately while the mass term mixes them).
Finally, the charge conjugation operator in this representation reads:

C =

(
ǫαβ 0

0 ǫα̇β̇

)
, C−1 =

(
ǫαβ 0
0 ǫα̇β̇

)
=⇒ CγTµC

−1 = −γµ . (2.30)

For a Dirac spinor ψD, one defines the charge conjugate spinor:

ψcD = Cψ̄TD =

(
ξα
χ̄α̇

)
(2.31)

The Majorana condition ψcM = ψM is therefore equivalent to χα = ξα and a Majorana
spinor can be constructed with just one Weyl spinor:

ψM =

(
ψα
ψ̄α̇

)
(2.32)

For two Majorana spinors ψM , φM , made out of Weyl spinors ψ, φ (resp.), one can
construct the following Lorentz invariant products:

ψ̄MφM = ψ̄φ̄+ ψφ = φ̄MψM = (ψ̄MφM)†

ψ̄Mγ
µφM = ψσµφ̄+ ψ̄σ̄µφ = −φ̄MγµψM = −(ψ̄Mγ

µφM)†

ψ̄Mγ
5φM = ψ̄φ̄− ψφ = φ̄Mγ

5ψM = −(ψ̄Mγ
5φM)†

ψ̄Mγ
µγ5φM = ψσµφ̄− ψ̄σ̄µφ = φ̄Mγ

µγ5ψM = (ψ̄Mγ
µγ5φM)† (2.33)
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And the Lorentz invariant Lagrangian for a Majorana spinor ψM reads:

L =
i

2
ψ̄Mγ

µ∂µψM − m

2
ψ̄MψM = iψ̄σ̄µ∂µψ − m

2
(ψψ + ψ̄ψ̄) . (2.34)

Before moving on to the susy algebra and representations, let us say a word about
representations of the Poincaré group. As we have seen, it is obtained by adding to the
Lorentz generators Mµν the translations Pµ. It can be shown that it is a group of rank
2 and that the only Casimirs (i.e. the equivalents of J2 for SU(2)) are P 2 and W 2, W µ

being the Pauli-Lubanski operator:

W µ = −1

2
ǫµνρσPνMρσ , (2.35)

where ǫµνρσ is the fully antisymmetric tensor with the convention ǫ0123 = 1 = −ǫ0123.
Irreducible representations are then characterised by their mass m with P 2 = m2. For
massive particles, the other quantum number is the spin s with W 2 = −m2s(s+ 1). For
massless particles, P 2 = W 2 = 0 and it can be shown that Wµ = λPµ where λ is the
helicity which can take only two integral or half-integral values ±λ.

2.3 Susy Algebra and Supermultiplets

We are now ready to display the susy algebra. The extra generators transform either
as undotted spinors Qα or dotted spinors Q̄α̇. The anticommutator of Qα and Q̄α̇ must
transform as a 4-vector, the only candidate being Pµ. Finally, it can be checked that the
susy generators commute with translations. So, in addition to (2.1), the graded algebra
of the susy and Poincaré generators is (up to multiplicative constants):

[Qα,Mµν ] = σ β
µνα Qβ

[Q̄α̇,Mµν ] = σ̄ α̇
µν β̇

Qβ̇

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0

[Qα, Pµ] = [Q̄α̇, Pµ] = 0 . (2.36)

(These relation can easily be obtained if one defines Qα and Q̄α̇ as differential operators
acting on the fermionic components of the superspace). In particular, M12 ≡ J3 thus

[J3, Q1] = −1

2
Q1 and [J3, Q2] =

1

2
Q2. Since Q̄1̇ = −Q†

2 and Q̄2̇ = Q†
1 one similarly has

[J3, Q
†
1] =

1

2
Q†

1 and [J3, Q
†
2] = −1

2
Q†

2. We conclude that Q1, Q
†
2 lower the z-component of

the spin (or helicity) by 1/2, while Q2, Q
†
1 rise it by 1/2.

Since the susy algebra contains the Poincaré algebra as a subalgebra, any represen-
tation of the former also gives a representation of the latter, although in general a re-
ducible one. Since each irreducible representation of the Poincaré algebra corresponds to
a massive or massless particle, an irreducible representation of the susy algebra in general
corresponds to several particles. The corresponding states are related to each other by
the Qα and Q̄α̇ and thus have spins differing by 1/2. They are called superpartners and
form a supermultiplet.
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From (2.36) it is easy to show that P 2 commutes with all generators of the susy algebra,
i.e. it is a Casimir operator. This implies that all superpartners in a supermultiplet
must have the same mass. In addition, if Ta’s are the generators of an internal (gauge)
symmetry, in addition to (1.18) we have the following commutation relations:

[Qα, Ta] = [Q̄α̇, Ta] = 0 . (2.37)

This means that superpartners in a supermultiplet must be in the same representation
of the gauge groups, i.e. they have the same gauge quantum numbers (charge, colour,
etc...). Finally, a supermultiplet contains an equal number of bosonic and fermionic
degrees of freedom, i.e. physical on-shell states (e.g. a photon has two degrees of freedom
corresponding to the two helicities +1 and −1). Let the fermion number be NF equal 1
on a fermionic state and 0 on a bosonic one. Equivalently (−1)NF is +1 on bosons and
−1 on fermions. We want to show that:

Tr (−1)NF = 0 , (2.38)

if the trace is taken over a supermultiplet. Note that (−1)NF anticommutes with Q. Using
the cyclicity of the trace, one has:

0 = Tr
(
−Qα(−1)NF Q̄β̇ + (−1)NF Q̄β̇Qα

)

= Tr
(
(−1)NF {Qα, Q̄β̇}

)
= 2σµ

αβ̇
Tr
(
(−1)NFPµ

)
. (2.39)

Choosing any non-vanishing momentum Pµ gives the desired result.
Let us see now what are the possible massless representations. Since in this case

P 2 = 0 we can choose a reference frame where Pµ = (E, 0, 0, E), so that

{Qα, Q̄α̇} =

(
4E 0
0 0

)

αα̇

. (2.40)

In particular {Q2, Q̄2̇} = 0. Let |Φ〉 be any state. The Hilbert space of states being
definite positive, one has:

0 = 〈Φ|{Q2, Q̄2̇}|Φ〉 = ||Q2|Φ〉||2 + ||Q̄2̇|Φ〉||2 =⇒ Q2 = Q̄2̇ = 0 . (2.41)

Thus we are left with 2 fermionic generators: Q1, Q̄1̇. If we define:

a = Q1/
√

4E , a† = Q̄1̇/
√

4E , (2.42)

we can deduce from (2.36) that a, a† are anticommuting annihilation/creation operators:

{a, a†} = 1 , {a, a} = {a†, a†} = 0 , (2.43)

(note that a† is in the 2R representation and carries helicity λ = +1/2 while a is in the 2L
representation with helicity λ = −1/2). One then chooses a “vacuum state” annihilated
by a. Such a state will carry some irreducible representation of the Poincaré algebra, i.e.
in addition to its zero mass it is characterised by some helicity λ0. We denote this state as
|λ0〉. From the commutators of Q1 and Q̄1̇ with the helicity operator which in the present
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frame is J3 = M12 one sees that Q1 lowers the helicity by one half and Q̄1̇ rises it by one
half. The supermultiplet then contains only two states:

|λ0〉 , a†|λ0〉 = |λ0 +
1

2
〉 . (2.44)

We denote this supermultiplet by
(
λ0, λ0 + 1

2

)
. In such a supermultiplet however helicities

are not distributed symmetrically about 0. Hence it is not invariant under CPT, since CPT
flips the sign of the helicity. To satisfy CPT one then needs to double these supermultiplets
by adding their CPT conjugate with opposite helicities and opposite quantum numbers.
Thus one arrives at the following representations:

• The massless chiral supermultiplet (λ0 = 0) consists of
(
0, 1

2

)
and its CPT conjugate(

−1
2
, 0
)
, corresponding to a Weyl spinor and a complex scalar.

• The massless vector supermultiplet (λ0 = 1
2
) consists of

(
1
2
, 1
)

plus
(
−1,−1

2

)
, cor-

responding to a gauge boson and a Weyl spinor, both in the adjoint representation
of the gauge group.

Higher helicity supermultiplets – including the graviton (spin 2) and its superpartner the
gravitino (spin 3/2) – are possible, but we won’t study them in detail in these lectures.

In the case of massive supermultiplets, one chooses the rest frame with Pµ = (m, 0, 0, 0)
and W 2 = −m2J2, where the Lorentz generators Ji = (M23,M31,M12) form a SU(2)
algebra. The susy algebra becomes:

{Qα, Q̄β̇} = 2mδαβ̇ , (2.45)

which defines two annihilation and creation operators

aα = Qα/
√

2m , a†
β̇

= Q̄β̇/
√

2m (2.46)

satisfying
{aα, a†β̇} = 2mδαβ̇ . (2.47)

Starting from a state |λ0〉 of helicity λ0 annihilated by a1, a2, one finds 4 different states:

|λ0〉 , a†
1̇
|λ0〉 = |λ0 +

1

2
〉 , a†

2̇
|λ0〉 = |λ0 −

1

2
〉 , a†α̇a

†

β̇
|λ0〉 = |λ′0〉 . (2.48)

To establish that the last state is of helicity λ0, one can use the following equality:
a†α̇a

†

β̇
= −1

2
ǫα̇β̇ a

†
γ̇a

†γ̇ , the last term being a Lorentz scalar (spin 0) made out of two spin
1
2

objects. One then gets the following representations, again labelled by their helicities:

• The massive chiral supermultiplet (λ0 = 0) consists of
(
−1

2
, 0, 0, 1

2

)
and is the same

as the massless chiral supermultiplet.

• The massive vector supermultiplet (λ0 = 1
2
) consists of

(
0, 1

2
, 1

2
, 1
)

to which we must

add the CPT conjugate
(
−1,−1

2
,−1

2
, 0
)
. In total we have the same states as in

a massless vector plus a massless chiral supermultiplets and the massive vector
supermultiplet can be obtained from them via a Higgs mechanism. In terms of
massive representations, this is a vector (3 degrees of freedom) a Dirac spinor (4
degrees of freedom) and a single real scalar (1 degrees of freedom).
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3 Chiral Supermultiplets and their Interactions

3.1 The Free Chiral Supermultiplet

The minimum fermion content of a field theory in four dimensions consists of a single
left-handed two component Weyl spinor ψα. Since this is an intrinsically complex object,
it seems sensible to choose as its superpartner a complex scalar field φ. The simplest
action we can write down for these fields just consists of kinetic energy terms for each:

S =

∫
d4x (Lscalar + Lfermion) , Lscalar = ∂µφ†∂µφ , Lfermion = iψ̄σ̄µ∂µψ . (3.1)

This is called the Wess-Zumino model, and it corresponds to a massles chiral supermul-
tiplet as discussed in the previous chapter.

A susy transformation should turn the boson field φ into something involving the
fermion field ψα. The simplest possibility for the transformation of the scalar field is:

δǫφ = ǫψ , δǫφ
† = ǭψ̄ , (3.2)

where ǫα is an infinitesimal, anticommuting, two component Weyl spinor parameterizing
the susy transformation. In these lectures, we will be discussing global susy only, which
means that ǫα is constant, satisfying ∂µǫ

α = 0. Since ψ has dimensions of [mass]3/2 and
φ has dimensions of [mass], ǫ has dimensions of [mass]−1/2. Using (3.2), we find that the
scalar part of the Lagrangian transforms as:

δǫLscalar = ǫ∂µψ∂µφ
† + ǭ∂µψ̄∂µφ . (3.3)

We would like this to be canceled by δǫLfermion, at least up to a total derivative, so that
the action is invariant under the susy transformation. Comparing (3.3) with Lfermion, we
see that for this to happen, δǫψ should be linear in ǭ and in φ, and should contain one
spacetime derivative. Up to a multiplicative constant, there is only one possibility:

δǫψα = −iσµ
αβ̇
ǭβ̇∂µφ , δǫψ̄

α̇ = iσ̄µα̇βǫβ∂µφ
† . (3.4)

With this guess, one immediately obtains:

δǫLfermion = −ǫσµσ̄ν∂νψ∂µφ† + ψ̄σ̄νσµǭ∂µ∂νφ . (3.5)

This can be put in a slightly more useful form by employing the identities (2.19) and
using the fact that partial derivatives commute (∂µ∂ν = ∂ν∂µ):

δǫLfermion = −ǫ∂µψ∂µφ† − ǭ∂µψ̄∂µφ− ∂µ
(
ǫσν σ̄µψ∂νφ

† − ǫψ∂µφ† − ǭψ̄∂µφ
)
. (3.6)

The first two terms here just cancel against δǫLscalar, while the remaining contribution is
a total derivative. So we arrive at:

δǫS =

∫
d4x (δǫLscalar + δǫLfermion) = 0 , (3.7)

justifying our guess of the numerical multiplicative factor made in (3.4).
We are not quite finished in showing that the theory described by (3.1) is super-

symmetric. We must also show that the susy algebra closes, in other words, that the
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commutator of two susy transformations parameterized by two different spinors ǫ1 and ǫ2
is another symmetry of the theory. Using (3.4) in (3.2), one finds for the scalar field:

(δǫ2δǫ1 − δǫ1δǫ2)φ = δǫ2(δǫ1φ) − δǫ1(δǫ2φ) = i(−ǫ1σµǭ2 + ǫ2σ
µǭ1)∂µφ . (3.8)

Hence, the commutator of two susy transformations gives us back the derivative of the
original field. Since i∂µ corresponds to the generator of spacetime translations Pµ, (3.8)
implies the form of the susy algebra that was given in (2.36).

For the spinor ψα, using (3.2) in (3.4), we get:

(δǫ2δǫ1 − δǫ1δǫ2)ψα = −iσµ
αβ̇
ǭβ̇1 ǫ

β
2∂µψβ + iσµ

αβ̇
ǭβ̇2 ǫ

β
1∂µψβ . (3.9)

This can be put into a more useful form by applying the following identity:

χα(ξη) + ξα(ηχ) + ηα(χξ) = 0 , (3.10)

with χ = σµǭ1, ξ = ǫ2, η = ∂µψ, and again with χ = σµǭ2, ξ = ǫ1, η = ∂µψ, followed by
an application of the identities (2.20). The result is:

(δǫ2δǫ1 − δǫ1δǫ2)ψα = i(−ǫ1σµǭ2 + ǫ2σ
µǭ1)∂µψα + iǫ1αǭ2σ̄

µ∂µψ − iǫ2αǭ1σ̄
µ∂µψ . (3.11)

The last two terms in (3.11) vanish on-shell, that is, if the equation of motion σ̄µ∂µψ = 0
following from the action is enforced. The remaining piece is exactly the same spacetime
translation that we found for the scalar field.

The fact that the susy algebra only closes on-shell (when the classical equations of
motion are satisfied) is somewhat worrisome, since we would like susy to hold at the
quantum level. This can be fixed by introducing a new complex scalar field F , which
does not have a kinetic term. Such fields are called auxiliary, and they are really just
book-keeping devices that allow the susy algebra to close off-shell. The Lagrangian for F
and its complex conjugate is simply:

Lauxiliary = F †F . (3.12)

The dimensions of F are [mass]2, unlike an ordinary scalar field, which has dimensions of
[mass]. The (not-very-exciting) equations of motion are F = F † = 0. However, we can
use the auxiliary fields to our advantage by including them in the susy transformations.
In view of (3.11), a plausible thing to do is to make F transform into a multiple of the
equation of motion for ψ:

δǫF = −iǭσ̄µ∂µψ , δǫF
† = i∂µψ̄σ̄

µǫ . (3.13)

Once again we have chosen the overall factor to get things right. Now the auxiliary part
of the Lagrangian transforms as:

δLauxiliary = −iǭσ̄µ∂µψF † + i∂µψ̄σ̄
µǫF , (3.14)

which vanishes on-shell, but not for arbitrary off-shell field configurations. Now, by adding
an extra term to the transformation rule for ψ and ψ̄:

δǫψα = −iσµ
αβ̇
ǭβ̇∂µφ+ ǫαF , δǫψ̄

α̇ = iσ̄µα̇βǫβ∂µφ
† + ǭα̇F † , (3.15)
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one obtains an additional contribution to δǫLfermion, which just cancels with δǫLauxiliary, up
to a total derivative term. So our “modified” theory with L = Lscalar +Lfermion +Lauxiliary

is invariant under susy transformations. Proceeding as before, one now obtains for each
of the fields X = φ, φ†, ψ, ψ̄, F, F †:

(δǫ2δǫ1 − δǫ1δǫ2)X = i(−ǫ1σµǭ2 + ǫ2σ
µǭ1)∂µX , (3.16)

using (3.2), (3.13), and (3.15), but now without resorting to any of the equations of motion.
So we have succeeded in showing that susy is a valid symmetry of the Lagrangian off-shell.

In retrospect, one can see why we needed to introduce the auxiliary field F in order
to get the susy algebra to work off-shell. On-shell, the complex scalar field ψ has two real
propagating degrees of freedom, matching the two spin polarization states of ψ. Off-shell,
however, the Weyl spinor ψ is a complex two component object, so it has four real degrees
of freedom. Going on-shell eliminates half of the propagating degrees of freedom for ψ,
because the Lagrangian is linear in time derivatives, so that the canonical momentum
can be reexpressed in terms of the field without time derivatives and are not independent
phase space coordinates:

πψ =
∂Lfermion

∂(∂0ψ)
= iψ̄σ̄0 . (3.17)

Another way to see this is to consider the frame in which the fermion momentum is
P µ = (E, 0, 0, E) so that the equation of motion reads:

σ̄µPµψ =

(
0 0
0 2E

)(
ψ1

ψ2

)
, (3.18)

which simply projects out half of the fermionic degrees of freedom. To make the numbers
of bosonic and fermionic degrees of freedom match off-shell as well as on-shell, we had
to introduce two more real scalar degrees of freedom in the complex field F , which are
eliminated when one goes on-shell. The auxiliary fields will also play an important role
when we add interactions to the theory and in gaining a simple understanding of susy
breaking.

3.2 Recovering the Susy Algebra

We are now going to show explicitly how to construct susy generators satisfying the
algebra (2.36). Invariance of the action under a susy transformation implies the existence
of a conserved supercurrent Jµα , which is an anticommuting 4-vector carrying a spinor
index. By the usual Noether procedure, one finds for the supercurrent (and its hermitian
conjugate) in terms of the variations of the fields X = φ, φ†, ψ, ψ̄, F, F †:

ǫJµ + ǭJ̄µ ≡
∑

X

δL
δ(∂µX)

δX −Kµ, (3.19)

where Kµ satisfies δL = ∂µK
µ. Note that Kµ is not unique: one can always replace Kµ

by Kµ+kµ, where kµ is any vector satisfying ∂µk
µ = 0, for example kµ = ∂µ∂νa

ν−∂ν∂νaµ.
Up to this ambiguity, one gets:

Jµα = (σν σ̄µψ)α∂νφ
† , J̄µα̇ = (ψ̄σ̄µσν)α̇∂νφ . (3.20)
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The supercurrent and its hermitian conjugate are separately conserved:

∂µJ
µ
α = 0 , ∂µJ̄

µ
α̇ = 0, (3.21)

as can be verified by use of the equations of motion. From these currents one constructs
the conserved charges:

Qα =
√

2

∫
d3~x J0

α , Q̄α̇ =
√

2

∫
d3~x J̄0

α̇ , (3.22)

which are the generators of susy transformations. As quantum mechanical operators, they
satisfy: [

ǫQ+ ǭQ̄, X
]

= −i
√

2 δX (3.23)

for any field X, up to terms that vanish on-shell. This can be verified explicitly by using
the canonical equal-time commutation and anticommutation relations:

[φ(~x), π(~y)] = [φ†(~x), π†(~y)] = iδ(3)(~x−~y) , {ψα(~x), ψ̄α̇(~y)} = σ0
αα̇ δ

(3)(~x−~y) , (3.24)

where π = ∂0φ
† and π† = ∂0φ are the momenta conjugate of φ and φ† (resp.).

Using (3.23), the content of (3.16) can be expressed in terms of canonical commutators:
[
ǫ2Q+ ǭ2Q̄,

[
ǫ1Q+ ǭ1Q̄, X

]]
−
[
ǫ1Q+ ǭ1Q̄,

[
ǫ2Q+ ǭ2Q̄, X

]]
=

2(ǫ1σ
µǭ2 − ǫ2σ

µǭ1) i∂µX , (3.25)

up to terms that vanish on-shell. The spacetime momentum operator is P µ = (H, ~P ),

where H is the Hamiltonian and ~P is the three-momentum operator, given in terms of
the canonical fields by:

H =

∫
d3~x

[
π†π + (~∇φ†) · (~∇φ) + iψ̄~σ · ~∇ψ

]
,

~P = −
∫
d3~x

[
π~∇φ+ π†~∇φ† + iψ̄σ̄0~∇ψ

]
. (3.26)

It generates spacetime translations on the fields X according to:

[P µ, X] = −i∂µX . (3.27)

Rearranging the terms in (3.25) using the Jacobi identity, we therefore have:
[[
ǫ2Q+ ǭ2Q̄, ǫ1Q+ ǭ1Q̄

]
, X
]

= 2(−ǫ1σµǭ2 + ǫ2σµǭ1) [P µ, X] , (3.28)

for any X, up to terms that vanish on-shell, so:
[
ǫ2Q+ ǭ2Q̄, e1Q+ ǭ1Q̄

]
= 2(−ǫ1σµǭ2 + ǫ2σµǭ1)P

µ . (3.29)

Now by expanding (3.29), one obtains the precise form of the susy algebra:

{Qα, Q̄α̇} = 2σµαα̇Pµ ,

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 , (3.30)

as in section 2.3. The result:

[Qα, P
µ] = [Q̄α̇, P

µ] = 0 (3.31)

follows immediately from (3.27) and the fact that the susy transformations are global
(independent of spacetime coordinates). This demonstration of the susy algebra in terms
of the canonical generators Q and Q̄ requires the use of the Hamiltonian equations of
motion, but the symmetry itself is valid off-shell at the level of the Lagrangian, as we
have already shown.
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3.3 Interactions of Chiral Supermultiplets

We are now going to construct the most general theory of (non-gauge) interactions for
particles that live in chiral supermultiplets (gauge interactions will be dealt with in the
next chapter). We start with the Lagrangian for a collection of free chiral supermultiplets
labeled by an index i. Since we want the susy algebra to close off-shell, each supermultiplet
contains a complex scalar φi and a left-handed Weyl spinor ψi as physical degrees of
freedom, plus a complex auxiliary field Fi which does not propagate. The Lagrangian is:

Lfree = ∂µφ†i∂µφi + iψ̄iσ̄µ∂µψi + F †iFi, (3.32)

where we sum over repeated indices i (not to be confused with the hidden spinor in-
dices), with the convention that fields φi and ψi always carry lowered indices, while their
conjugates always carry raised indices. The free Lagrangian is invariant under the susy
transformations:

δǫφi = ǫψi , δφ†i = ǭψ̄i ,
δǫ(ψi)α = −i(σµǭ)α∂µφi + ǫαFi , δǫ(ψ̄

i)α̇ = i(ǫσµ)α̇∂µφ
†i + ǭα̇F

†i ,
δǫFi = −iǭσ̄µ∂µψi , δǫF

†i = i∂µψ̄
iσ̄µǫ .

(3.33)

We will now find the most general set of renormalizable interactions for these fields
consistent with susy. We do this before integrating out the auxiliary fields. In order to
be renormalizable by power counting, each term must have a total mass dimension ≤ 4.
So, the only possible terms are:

Lint =

(
−1

2
W ijψiψj +W iFi + xijFiFj

)
+ c.c.− U , (3.34)

where W ij, W i, xij , and U are polynomials in the scalar fields φi, φ
†i with degrees 1, 2,

0, and 4 (resp.). Terms of the form F †iFj are already included in (3.32), with coefficients
fixed by the transformation rules (3.33).

We must now require that Lint is invariant under susy transformations, since Lfree is
already invariant by itself. This implies that the candidate term U(φi, φ

†i) must vanish.
If there were such a term, then under a susy transformation (3.33) it would transform into
another function of the scalar fields multiplied by ǫψi or ǭψ̄i, and no spacetime derivatives
or auxiliary fields Fi, F

†i. It is easy to see from (3.33) and (3.34) that nothing of this form
can possibly be canceled by the susy transformation of any other term in the Lagrangian.
Similarly, the dimensionless couplings xij must be zero, because their susy transformation
likewise cannot possibly be canceled by any other term. So, we are left with:

Lint =

(
−1

2
W ijψiψj +W iFi

)
+ c.c. (3.35)

as the only possibilities. At this point, we are not assuming that W ij and W i are related
to each other. Soon we will find out that they are, which is why we have chosen the same
letter for them. Note that (2.17) implies that W ij is symmetric under i↔ j.

It is easier to divide the variation of Lint into parts which must cancel separately.
First, we consider the part that contains four spinors:

δLint|4−spinor =

[
−1

2

δW ij

δφk
(ǫψk)(ψiψj) −

1

2

δW ij

δφ†k
(ǭψ̄k)(ψiψj)

]
+ c.c. . (3.36)
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The term proportional to (ǫψk)(ψiψj) cannot cancel against any other term. Fortunately,
however, the identity (3.10) implies:

(ǫψi)(ψjψk) + (ǫψj)(ψkψi) + (ǫψk)(ψiψj) = 0 , (3.37)

so this contribution to δLint vanishes identically if δW ij/δφk is totally symmetric under
interchange of i, j, k. There is no such identity available for the term proportional to
(ǭψ̄k)(ψiψj). Since that term cannot cancel with any other, requiring it to be absent just
tells us that W ij cannot contain φ†k. In other words, W ij is analytic (or holomorphic) in
the complex fields φk.

Combining what we have learned so far, we can write:

W ij = M ij + yijkφk , (3.38)

where M ij is a symmetric mass matrix for the fermion fields, and yijk is a Yukawa coupling
of a scalar φk and two fermions ψiψj that must be totally symmetric under interchange
of i, j, k. It is therefore possible, and it turns out to be convenient, to write:

W ij =
δ2W

δφiδφj
, (3.39)

where we have introduced a useful object:

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk , (3.40)

called the superpotential. This is not a scalar potential in the ordinary sense; in fact, it is
not even real. It is instead an analytic function of the scalar fields φi treated as complex
variables.

Continuing on our quest, we next consider the parts of δLint that contain a spacetime
derivative:

δLint|∂ =
(
iW ij∂µφjψiσ

µǭ+ iW i∂µψiσ
µǭ
)

+ c.c. (3.41)

Here we have used the identity (2.20) on the second term, which came from (δFi)W
i.

Now we can use (3.39) to observe that:

W ij∂µφj = ∂µ

(
δW

δφi

)
. (3.42)

Therefore (3.41) is a total derivative if

W i =
δW

δφi
= M ijφj +

1

2
yijkφjφk, (3.43)

which explains why we chose the same name. The remaining terms in δLint are all linear
in Fi or F †i, and it is easy to show that they cancel, given the results for W i and W ij

that we have already found.
Actually, we can include a linear term in the superpotential without disturbing the

validity of the previous discussion at all:

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk . (3.44)
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Here Li are parameters with dimensions of [mass]2, which affect only the scalar potential
part of the Lagrangian. Such linear terms are only allowed when φi is a gauge singlet, and
there are no such gauge singlet chiral supermultiplets in the MSSM with minimal field
content. We will therefore omit these terms from the remaining discussion of this section.

To recap, we have found that the most general non-gauge interactions for chiral su-
permultiplets are determined by a single analytic function of the complex scalar fields,
the superpotential W . The auxiliary fields Fi and F †i can be eliminated using their clas-
sical equations of motion. The part of Lfree + Lint that contains the auxiliary fields is
FiF

†i +W iFi +W †
i F

†i, leading to the equations of motion:

Fi = −W †
i , F †i = −W i. (3.45)

Thus the auxiliary fields are algebraic expressions in terms of the scalar fields (without any
derivatives). After making the replacement (3.45) in Lfree+Lint, we obtain the Lagrangian:

Lchiral = ∂µφ†i∂µφi + iψ̄iσ̄µ∂µψi −
1

2

(
W ijψiψj +W †

ijψ̄
iψ̄j
)
−W iW †

i . (3.46)

Now that the non-propagating fields Fi, F
†i have been eliminated, it follows from (3.46)

that the scalar potential for the theory is just given in terms of the superpotential by:

V (φ, φ†) = W kW †
k = F †kFk

= M∗
ikM

kjφ†iφj +
1

4
yijny∗klnφiφjφ

†kφ†l

+
1

2
M iny∗jknφiφ

†jφ†k +
1

2
M∗

iny
jknφ†iφjφk . (3.47)

This scalar potential is automatically bounded from below; in fact, since it is a sum of
squares it is always ≥ 0. If we substitute the general form for the superpotential (3.40)
into (3.46), we obtain for the full Lagrangian:

Lchiral = ∂µφ†i∂µφi + iψ̄iσ̄µ∂µψi −
1

2
M ijψiψj −

1

2
M∗

ijψ̄
iψ̄j

−1

2
yijkφiψjψk −

1

2
y∗ijkφ

†iψ̄jψ̄k − V (φ, φ†) . (3.48)

Now we can compare the masses of the fermions and scalars by looking at the equations
of motion:

∂µ∂µφi = −M∗
ikM

kjφj+. . . , iσ̄µ∂µψi = M∗
ijψ̄

j+. . . , iσµ∂µψ̄
i = M ijψj+. . . . (3.49)

One can eliminate ψ in terms of ψ̄ and vice versa in (3.49), obtaining after use of the
identities (2.19):

∂µ∂µψi = −M∗
ikM

kjψj + . . . , ∂µ∂µψ̄
j = −ψ̄iM∗

ikM
kj + . . . . (3.50)

Therefore, the fermions and the bosons satisfy the same wave equation with exactly the
same squared mass matrix with real positive eigenvalues, namely (M2)

j
i = M∗

ikM
kj . It

follows that diagonalizing this matrix by redefining the fields with a unitary matrix gives
a collection of chiral supermultiplets, each of which contains a mass-degenerate complex
scalar and Weyl spinor, in agreement with the general argument in section 2.3.

Finally, note that the quartic scalar coupling in (3.47) is equal to the fermion Yukawa
coupling in (3.48). This is essential in proving that susy invariant theories are free of
quadratic divergences.
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4 Susy Gauge Interactions and Susy Breaking

4.1 The Free Vector Supermultiplet

The propagating degrees of freedom in a vector supermultiplet are a massless gauge bo-
son Aaµ and a two component Weyl spinor λaα, called gaugino. The index a runs over
the adjoint representation of the gauge group (a = 1..8 for SU(3)C gluons and gluinos;
a = 1..3 for SU(2)L W bosons and winos; a = 1 for U(1)Y B boson and bino). The gauge
transformations of the vector supermultiplet fields are:

δΛA
a
µ = −∂µΛa − gfabcΛbAcµ , δΛλ

a
α = −gfabcΛbλcα , (4.1)

where Λa is an infinitesimal gauge transformation parameter, g is the gauge coupling, and
fabc are the antisymmetric structure constants that define the gauge group. They satisfy:

[T ar , T
b
r ] = ifabcT cr , (4.2)

for the generators T ar of any representation r. In the adjoint representation, the generator
matrices are given by the structure constants themselves:

(T aAd)bc = −ifabc . (4.3)

The special case of an abelian U(1) group is obtained by just setting a = 1 and fabc = 0
(the corresponding gaugino is a gauge singlet in that case).

The on-shell degrees of freedom for Aaµ and λaα amount to two bosonic and two fermionic
helicity states (for each a), as required by the susy algebra. However, off-shell λaα consists
of two complex, i.e. four real fermionic degrees of freedom, while Aaµ only has three real
bosonic degrees of freedom. Indeed, Aaµ has 4 real components, one of which can be
removed by the gauge transformation (4.1), e.g. one can choose Λ such that the Lorentz
condition ∂µA

µ = 0 is verified. So, we will need one real bosonic auxiliary field Da in order
for the susy algebra to be closed off-shell. This field is also in the adjoint representation
of the gauge group, i.e. it transforms like λaα in (4.1), and satisfies (Da)∗ = Da. Like the
chiral auxiliary fields Fi, the gauge auxiliary field Da has dimensions of [mass]2 and no
kinetic term, so it can be eliminated on-shell using its algebraic equation of motion.

The Lagrangian for a vector supermultiplet can then be written as:

Lvector = iλ̄aσ̄µDµλ
a − 1

4
F a
µνF

µνa +
1

2
DaDa , (4.4)

where
F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAbµA

c
ν (4.5)

is the usual Yang-Mills field strength, and

Dµλ
a = ∂µλ

a − gfabcAbµλ
c (4.6)

is the covariant derivative of the gaugino field. To check that (4.4) is really supersym-
metric, one must specify the susy transformations of the fields. The forms of these follow
from the requirements that they should be linear in the infinitesimal parameters ǫ, ǭ with
dimensions of [mass]−1/2, that δAaµ is real, and that δDa should be real and proportional
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to the field equations for the gaugino, in analogy with the role of the auxiliary field F in
the chiral supermultiplet case. Thus one can guess, up to multiplicative factors, that:

δǫA
a
µ = − 1√

2

(
ǭσ̄µλ

a + λ̄aσ̄µǫ
)
, δǫD

a =
i√
2

(
−ǭσ̄µDµλ

a +Dµλ̄
aσ̄µǫ

)
,

δǫλ
a
α = − i

2
√

2
(σµσ̄νǫ)αF

a
µν +

1√
2
ǫαD

a , δǫλ̄
a
α̇ =

i

2
√

2
(ǭσ̄νσµ)α̇F

a
µν +

1√
2
ǭα̇D

a .
(4.7)

It is now a little bit tedious, but straightforward, to also check that

(δǫ2δǫ1 − δǫ1δǫ2)X = i(−ǫ1σµǭ2 + ǫ2σ
µǭ1)DµX (4.8)

for X equal to any of the gauge-covariant fields F a
µν , λ

a, λ̄a, Da, as well as for arbitrary
covariant derivatives acting on them. This ensures that the susy algebra (2.36) is realized
on gauge invariant combinations of fields in vector supermultiplets, as they are for the
chiral supermultiplets in (3.16). This check requires the use of identities (2.19) and (2.20)
as well as:

σ̄µσν σ̄ρ = gµν σ̄ρ + gνρσ̄µ − gµρσ̄ν − iǫµνρκσ̄κ ,

σµσ̄νσρ = gµνσρ + gνρσµ − gµρσν + iǫµνρκσκ . (4.9)

If we had not included the auxiliary field Da, then the susy algebra (4.8) would hold
only after using the equations of motion for λa and λ̄a. The equation of motion for the
field strength is ∂µF a

µν = 0 while auxiliary fields satisfies a trivial equation of motion
Da = 0. However, the latter is modified if one couples the gauge supermultiplets to chiral
supermultiplets, as we do in the next section.

4.2 Susy Gauge Interactions

Now we are ready to consider a general Lagrangian for a susy theory with both chiral
and vector supermultiplets. Suppose that the chiral supermultiplets transform under the
gauge group in a representation with hermitian matrices (T a)i

j satisfying (4.2). Since
susy and gauge transformations commute, the scalar, fermion, and auxiliary fields must
be in the same representation of the gauge group, so:

δΛXi = igΛa(T aX)i (4.10)

for Xi = φi, ψi, Fi. To have a gauge invariant Lagrangian, we now need to replace the
ordinary derivatives in (3.32) with covariant derivatives:

∂µφi → Dµφi = ∂µφi + igAaµ(T
aφ)i ,

∂µφ
†i → Dµφ

†i = ∂µφ
†i − igAaµ(φ

†T a)i ,

∂µψi → Dµψi = ∂µψi + igAaµ(T
aψ)i . (4.11)

Naively, this simple procedure achieves the goal of coupling the gauge bosons in the vector
supermultiplet to the scalars and fermions in the chiral supermultiplets. However, we also
have to consider whether there are any other interactions allowed by gauge invariance
and involving the gaugino and Da fields, which might have to be included to make a
susy invariant Lagrangian. Since Aaµ couples to φi and ψi, it makes sense that λa and Da

should as well.
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There are three such possible terms that are renormalizable (of mass dimension ≤ 4):

(φ†T aψ)λa , λ̄a(ψ̄T aφ) , and (φ†T aφ)Da . (4.12)

One can add them with unknown dimensionless coupling coefficients to the Lagrangians
for the chiral and vector supermultiplets and demand that the whole mess be real and
invariant under susy, up to a total derivative. Not surprisingly, this is possible only if the
susy transformations for the chiral fields are modified to include gauge-covariant rather
than ordinary derivatives. Also, it is necessary to include one extra term in δǫFi:

δǫφi = ǫψi ,

δǫψiα = −i(σµǭ)αDµφi + ǫαFi ,

δǫFi = −iǭσ̄µDµψi +
√

2g(T aφ)iǭλ̄
a . (4.13)

After some algebra one can now fix the coefficients for the terms in (4.12), with the result
that the full Lagrangian for a renormalizable supersymmetric theory is:

L = Lchiral + Lvector −
√

2g(φ†T aψ)λa −
√

2gλ̄a(ψ̄T aφ) + g(φ†T aφ)Da . (4.14)

Here Lchiral is the chiral supermultiplet Lagrangian (3.46) or (3.48), but with ordinary de-
rivatives replaced everywhere by gauge-covariant derivatives, and Lvector is given in (4.4).
To prove that the full Lagrangian (4.14) is invariant under the susy transformations, one
must use the identity

W i(T aφ)i = 0 . (4.15)

This is precisely the condition that must be satisfied anyway in order for the superpoten-
tial, and thus Lchiral, to be gauge invariant, since the left side is proportional to δΛW .

The new terms in (4.14) consists of interactions which strengths are fixed to be gauge
couplings by the requirements of susy, even though they are not gauge interactions from
the point of view of an ordinary field theory. The first two terms are a direct coupling
of gauginos to matter fields; this can be thought of as the “supersymmetrization” of the
usual gauge boson couplings to matter fields. The last term combines with the 1

2
DaDa

term in Lvector to provide an equation of motion for the vector auxiliary field;

Da = −g(φ†T aφ) . (4.16)

Thus, like the auxiliary fields Fi and F †i, the Da are expressible purely algebraically in
terms of the scalar fields. Replacing the auxiliary fields in (4.14) using (4.16), one finds
that the complete scalar potential is (recall that L contains −V ):

V (φ, φ†) = F †iFi +
1

2

∑

a

DaDa = W †
iW

i +
1

2

∑

a

g2
a(φ

†T aφ)2 . (4.17)

The two types of terms in this expression are called “F term” and “D term” contribu-
tions, respectively. In the second term of (4.17), we have now written an explicit sum
to cover the case where the gauge group has several distinct factors with different gauge
couplings ga. Since V (φ, φ†) is a sum of squares, it is always ≥ 0 for every field configu-
rations. It is an interesting and unique feature of supersymmetric theories that the scalar
potential is completely determined by the other interactions of the theory. The F terms
are fixed by Yukawa couplings and fermion mass terms, and the D terms are fixed by the
gauge interactions. Here again, note the relation between scalar quartic couplings and
gauge couplings, which is essential in proving the absence of quadratic divergences in susy
theories.
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4.3 Spontaneous vs. Soft Susy Breaking

As we have seen, susy models are extremely constrained: the masses and interactions
of the various fields are described by a handful of parameters: namely the masses and
Yukawa couplings in the superpotential and the gauge interactions. In particular, all
particles within a supermultiplet must have the same mass. This is a direct consequence
of the susy algebra (2.36) in which P 2 is a Casimir operator. Clearly, this implies that
susy cannot be an exact symmetry of particle physics. Otherwise, there would be scalar
partners of the electron (selectrons) with masses exactly equal to me = 511 keV, as well as
massless fermionic partners of the photon (photino) and gluons (gluinos). Such particles
would have been extraordinarily easy to detect long ago, yet none has been reported yet.
We must therefore find a way to give susy breaking masses to the superpartners of the SM
particles without reintroducing quadratic divergences in the theory (which was motivation
number one for the introduction of susy). There are two approaches: The first (idealistic)
one is to devise a mechanism of spontaneous susy breaking (in this way, susy would be
hidden at low energies in a similar way as the electroweak symmetry is in the SM); The
second (pragmatic) approach is to introduce “by hand” the desired susy breaking terms.

Let us start with the first approach. If susy is broken spontaneously, the full La-
grangian of the theory is susy invariant, but the the vacuum state |0〉 is not:

Qα|0〉 6= 0 , Q̄α̇|0〉 6= 0 . (4.18)

From the susy algebra (2.36), we can derive a relation between the the susy generators
and the Hamiltonian:

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ =⇒ H = P 0 =

1

4

(
Q1Q̄1̇ + Q̄1̇Q1 +Q2Q̄2̇ + Q̄2̇Q2

)
. (4.19)

This implies that the energy of any state |Φ〉 is positive definite:

〈Φ|H|Φ〉 =
1

4

(
||Q1|Φ〉||2 + ||Q̄1̇|Φ〉||2 + ||Q2|Φ〉||2 + ||Q̄2̇|Φ〉||2

)
≥ 0 . (4.20)

In particular, it means that susy is spontaneously broken if and only if:

〈0|H|0〉 = 〈0|V |0〉 > 0 , (4.21)

where V is the scalar potential (4.17) which consists of a sum of squares of auxiliary fields
Fi and Da. Therefore, susy will be spontaneously broken if the vev of some Fi or Da does
not vanish. One way to guarantee spontaneous susy breaking is then to look for models
in which the equations Fi = 0 and Da = 0 cannot be simultaneously fulfilled for any field
configuration (as soon as it is for one field configuration, the global minimum will be for
〈V 〉 = 0, i.e. susy invariant).

Susy breaking with a non-zero D term vev can occur through the Fayet-Iliopoulos
mechanism: if the gauge symmetry includes a U(1) factor, then one can introduce a term
linear in the corresponding auxiliary field of the vector supermultiplet:

LFI = −κD , (4.22)

where κ is a constant with dimensions of [mass]2. For a U(1) gauge symmetry, the susy
transformation δǫD in (4.7) is a total derivative and Da is a gauge singlet. Hence, (4.22) is
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both susy and gauge invariant (this would not be the case for a non-abelian gauge group).
If we include this Fayet-Iliopoulos term in the Lagrangian, then D may be forced to get
a non-zero vev. To see this, consider the relevant part of the scalar potential from (4.4)
and (4.14):

V = κD − 1

2
D2 − gD

∑

i

qi|φi|2 . (4.23)

Here the qi are the charges of the scalar fields φi under the U(1) gauge group in question.
The presence of the Fayet-Iliopoulos term modifies the equation of motion (4.16) for D:

D = κ− g
∑

i

qi|φi|2 . (4.24)

Suppose that the scalar fields φi charged under U(1) have superpotential masses mi. Then
the potential will have the form:

V =
∑

i

|mi|2|φi|2 +
1

2
(κ− g

∑

i

qi|φi|2)2. (4.25)

Since this cannot vanish, susy must be broken. For the simplest case in which |mi|2 > gqiκ,
the minimum is realized for φi = 0 and D = κ, with the U(1) gauge symmetry unbroken.
As further evidence that susy has indeed been spontaneously broken, note that the scalars
have squared masses |mi|2−gqiκ, while their fermion partners have squared masses |mi|2.
The gaugino however remains massless.

In models where spontaneous susy breaking is due to a non-zero F term vev, called
O’Raifeartaigh models, the idea is to pick a set of chiral supermultiplets (φi, ψi, Fi) and
a superpotential W in such a way that the equations Fi = −δW †/δφ†i = 0 have no
simultaneous solution. Then V =

∑
i |Fi|2 will have to be positive at its minimum,

ensuring that susy is broken. The simplest example that does the trick has three chiral
supermultiplets with:

W = −kφ1 +mφ2φ3 +
y

2
φ1φ

2
3 . (4.26)

Note that W contains a linear term, with k having dimensions of [mass]2. Such a term
is allowed if the corresponding chiral supermultiplet is a gauge singlet. In fact, a linear
term is necessary to achieve F term breaking at tree level in renormalizable theories, since
otherwise setting all φi = 0 will always give a supersymmetric global minimum with all
Fi = 0. Without loss of generality, we can choose k, m, and y to be real and positive (by
a phase rotation of the fields). The scalar potential then reads:

V = |F1|2 + |F2|2 + |F3|2 , , F1 = k − y

2
φ†2

3 , F2 = −mφ†
3 , F3 = −mφ†

2 − yφ†
1φ

†
3 .

(4.27)
Clearly, F1 = 0 and F2 = 0 are not compatible, so susy must indeed be broken. If
m2 > yk, the absolute minimum of the potential is at φ2 = φ3 = 0 with φ1 undetermined,
so F1 = k and V = k2 at the minimum. The fact that φ1 is undetermined is an example
of a “flat direction” in the scalar potential; this is a common feature of susy models. The
mass spectrum of the theory consists of six real scalars with tree level squared masses:
0, 0, m2, m2, m2 − yk, m2 + yk. Meanwhile, there are three Weyl fermions with squared
masses: 0, m2, m2. The non-degeneracy of scalars and fermions is a clear sign that susy
has been spontaneously broken. The 0 eigenvalues correspond to the complex scalar φ1

and its fermionic partner ψ1.
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In both D term and F term spontaneous susy breaking, one then encounters light
states which are not welcome in a susy extension of the SM. This could have been foreseen,
as the spontaneous breaking of a global symmetry always yields a massless Goldstone
mode with the same quantum numbers as the broken symmetry generator. In the case
of global susy, the broken generator is the fermionic charge Qα, so the Goldstone mode
is a massless neutral Weyl fermion, called the goldstino. To prove it, consider a generic
susy model with both chiral and vector supermultiplets as in the previous section. The
fermionic degrees of freedom consist of gauginos (λa) and chiral fermions (ψi). After some
of the scalar fields in the theory get vevs, the fermion mass matrix in the (λa, ψi) basis
has the form:

mF =

(
0

√
2gb(〈φ†〉T b)i√

2ga(〈φ†〉T a)j 〈W ji〉

)
. (4.28)

Now mF annihilates the vector:

G̃ =

(
〈Da〉/

√
2

〈Fi〉

)
. (4.29)

The first row of mF annihilates G̃ by virtue of the requirement (4.15) that the superpoten-
tial is gauge invariant, and the second row does so because of the condition 〈∂V/∂φi〉 = 0,
which must be satisfied at a local minimum of the scalar potential. Equation (4.29) is
therefore proportional to the goldstino wavefunction; it is non-trivial if and only if at least
one of the auxiliary fields has a vev, breaking susy. So if global susy is spontaneously bro-
ken, there must be a massless goldstino, and its components among the various fermions
in the theory are just proportional to the corresponding auxiliary field vevs.

However, if susy is promoted to be a local (gauge) symmetry, i.e. if the susy transfor-
mation parameter ǫα depends on the spacetime coordinate, the goldstino will no longer
be massless. Such theories are called supergravity (sugra) as they include a description
of gravitation (cf. remark at the end of section 1.3). In sugra, the spin 2 graviton has a
spin 3/2 fermion superpartner Ψα

µ, the gravitino. It carries both a vector index (µ) and a
spinor index (α), and transforms inhomogeneously under local susy transformations:

δΨα
µ = ∂µǫ

α + . . . . (4.30)

Thus the gravitino should be thought of as the “gauge” field of local susy transformations
(compare (4.30) with (4.1)). As long as susy is unbroken, the graviton and the gravitino
are massless, each with two spin helicity states. Once susy is spontaneously broken,
the gravitino acquires a mass by absorbing (“eating”) the goldstino, which becomes its
longitudinal (helicity ±1/2) components. This is called the super-Higgs mechanism, and it
is analogous to the SM Higgs mechanism by which theW± and Z0 gauge bosons gain mass
by absorbing the Goldstone bosons associated with the spontaneously broken electroweak
gauge symmetry. The massive spin 3/2 gravitino now has four helicity states, of which
two were originally assigned to the would-be goldstino. The gravitino mass is traditionally
called m3/2, and in the case of F term breaking it can be estimated as

m3/2 ∼
〈F 〉

MPlanck
, (4.31)

This follows simply from dimensional analysis, since m3/2 must vanish in the limits that
susy is restored (〈F 〉 → 0) and that gravity is turned off (MPlanck → ∞).
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It is usually assumed that susy (or sugra) is spontaneously broken at high energy in
some hidden sector and the breaking transmitted to low energy fields by some interaction
(e.g. gravitation). Many models of susy breaking have been proposed and there is no
consensus on exactly how this should be done. From a practical point of view, it is useful
to simply parameterize our ignorance of these issues by just introducing extra terms that
break susy explicitly in the effective low energy Lagrangian. These terms however should
not reintroduce quadratic divergences in the theory, i.e. they should be “soft”. The
cancellation of quadratic divergences in susy models is due to the relation between the
dimensionless couplings of the theory (namely the scalar quartic couplings, the fermion
Yukawa couplings and the gauge couplings). Soft susy breaking terms should therefore
be of positive mass dimension. The most general soft susy breaking Lagrangian is:

Lsoft = −
(

1

2
Ma λ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c.− (m2)ijφ

†jφi , (4.32)

It containst gaugino masses Ma for each gauge group, scalar squared mass terms (m2)ji ,
and scalar couplings aijk, bij and ti. The last of these can only occur if φi is a gauge
singlet. One might wonder why we have not included possible soft mass terms for the
chiral supermultiplet fermions, like L = −1

2
mijψiψj + c.c.. Such terms however can

always be absorbed into a redefinition of the superpotential and the terms (m2)ij . In the
special case of a theory withs chiral supermultiplets that are singlets or in the adjoint
representation of the gauge group, there are also possible soft susy breaking Dirac mass
terms between the corresponding fermions ψa and the gauginos:

L′
soft = −Ma

Diracλ
aψa + c.c. (4.33)

This is not relevant for the MSSM with minimal field content, which does not have adjoint
representation nor singlet chiral supermultiplets.

It has been shown rigorously that a softly broken supersymmetric theory with Lsoft as
given by (4.32) is indeed free of quadratic divergences in quantum corrections to scalar
masses, to all orders in perturbation theory. The terms in Lsoft clearly do break susy,
because they involve only scalars and gauginos and not their respective superpartners. In
fact, the soft terms in Lsoft are capable of giving masses to all the scalars and gauginos,
even if the gauge bosons and fermions in chiral supermultiplets are massless (or relatively
light). The gaugino masses Ma are always allowed by gauge symmetry. The (m2)ij terms
are allowed for i, j such that φi, φ

†j transform in complex conjugate representations of
each other under all gauge symmetries; in particular this is true of course when i = j,
so every scalar is eligible to get a mass in this way if susy is broken. The remaining soft
terms may or may not be allowed by the symmetries. The aijk, bij , and ti terms have
the same form as the yijk, M ij , and Li terms in the superpotential (3.44), so they will
each be allowed by gauge invariance if and only if a corresponding superpotential term is
allowed. For the superpartners to have escaped detection at LEP and Tevatron, the soft
susy breaking masses must be at least of the order of 100 GeV. On the other hand, if susy
is broken softly, according to (1.13) the radiative corrections to the Higgs mass are:

δm2
H ∼ m2

soft ln Λ , (4.34)

where Λ is the ultraviolet cut-off. To avoid an excessive fine tuning, the soft masses should
not exceed the TeV scale. Hence, susy should be just around the corner, within reach of
the LHC!
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5 The Minimal Susy Standard Model (MSSM)

5.1 The Minimal Field Content

We now have all the ingredients to construct a realistic susy extension of the SM. The
minimal susy extension, the MSSM, has a minimal field content. First note that all the
SM fermions (quarks and leptons) have their left-handed parts transforming differently
under the gauge group than their right-handed parts. Only chiral supermultiplets can
contain fermions with this property, so they must be members of chiral supermultiplets.
The spin 0 partners of the quarks and leptons are called squarks and sleptons (short for
“scalar quark” and “scalar lepton”), or sfermions. The left-handed and right-handed
pieces of the quarks and leptons are separate two component Weyl fermions with different
gauge transformation properties, so each must have its own complex scalar partner. The
symbols for the squarks and sleptons are the same as for the corresponding fermion, but
with a tilde. For example, the superpartners of the left- and right-handed parts of the
electron field are called left- and right-handed selectrons, and are denoted ẽL and ẽR. It
is important to keep in mind that the “handedness” here does not refer to the helicity
of the selectrons (they are spin 0 particles) but to that of their superpartners. A similar
nomenclature applies for smuons and staus: µ̃L, µ̃R, τ̃L, τ̃R. The neutrinos (neglecting
their very small masses) are always left-handed, so the sneutrinos are denoted generically
by ν̃, with a possible subscript indicating which lepton flavor they carry: ν̃e, ν̃µ, ν̃τ .
Finally, a complete list of the squarks is q̃L, q̃R with q = u, d, s, c, b, t.

It seems clear that the Higgs boson must reside in a chiral supermultiplet, since it has
spin 0. Actually, it turns out that just one chiral supermultiplet is not enough. One reason
is that if there were only one Higgs chiral supermultiplet, the electroweak gauge symmetry
would suffer a gauge anomaly, and would be inconsistent as a quantum theory. This is
because the conditions for cancellation of gauge anomalies include Tr[T 2

3 Y ] = Tr[Y 3] = 0,
where T3 and Y are the third component of weak isospin and the hypercharge (resp.)
in a normalization where the ordinary electric charge is Q = T3 + Y . The traces run
over all of the left-handed Weyl fermionic degrees of freedom in the theory. In the SM,
these conditions are already satisfied, by the known quarks and leptons. Now, a fermionic
partner of a Higgs chiral supermultiplet must be a SU(2)L doublet with hypercharge
Y = 1/2 or Y = −1/2. In either case alone, such a fermion will make a non-zero
contribution to the traces and spoil the anomaly cancellation. This can be avoided if there
are two Higgs doublets, with Y = ±1/2, so that the total contribution to the anomaly
traces from the two fermionic members of the Higgs chiral supermultiplets vanishes. As
we will see in the next section, only a Y = 1/2 Higgs chiral supermultiplet can have
the Yukawa couplings necessary to give masses to up-type quarks (u, c, t), while only a
Y = −1/2 Higgs can have the Yukawa couplings necessary to give masses to down-type
quarks (d, s, b) and charged leptons (e, µ, τ). We call the SU(2)L doublet complex scalar
fields with Y = ±1/2 Hu and Hd (resp.).The components of Hu with T3 = (1/2, −1/2)
have electric charges +1, 0 (resp.) and are denoted (H+

u , H0
u). Similarly, the SU(2)L

doublet complex scalar Hd has T3 = (1/2, −1/2) components (H0
d , H

−
d ). The generic

nomenclature for a spin 1/2 superpartner is to append “-ino” to the name of the SM
particle, so the fermionic partners of the Higgs scalars are called higgsinos. They are
denoted by H̃u, H̃d for the SU(2)L doublet left-handed Weyl spinor fields, with weak

isospin components (H̃+
u , H̃0

u) and (H̃0
d , H̃

−
d ).
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(×3 families) U c ũcR ucR ( 3̄, 1, −2
3
)

Dc d̃cR dcR ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(×3 families) Ec ẽcR ecR ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2
)

Table 5.1: Chiral supermultiplets in the MSSM. The spin 0 fields are complex scalars,
and the spin 1/2 fields are left-handed two component Weyl fermions.

We now have all the chiral supermultiplets of the MSSM, summarized in table 5.1.
Fields are classified according to their transformation under SU(3)C×SU(2)L×U(1)Y and
(uL, dL), (ν, eL) are combined into SU(2)L doublets. All chiral supermultiplets are defined
in terms of left-handed Weyl spinors, so that the charge conjugates of the right-handed
quarks and charged leptons (and their scalar partners) appear in table 5.1. The SU(2)L
singlet supermultiplets then contain left-handed antifermions and their scalar partners
with charge +1 for ẽcR, −2/3 for ũcR, and +1/3 for d̃cR. It is also useful to have a symbol
for each of the chiral supermultiplets as a whole; these are indicated in the second column
of table 5.1. There are three families for each of the quark and lepton supermultiplets,
for which a family index i = 1..3 can be affixed to the chiral supermultiplet names.

The gauge bosons of the SM clearly must reside in vector supermultiplets. Their
fermionic superpartners are called gauginos. The SU(3)C color interaction is mediated
by the gluon g, whose spin 1/2 superpartner is the gluino g̃. The electroweak gauge
symmetry SU(2)L × U(1)Y is associated with spin 1 gauge bosons W+,W 0,W− and B0,

whose spin 1/2 superpartners W̃+, W̃ 0, W̃− and B̃0 are called winos and bino. After
EWSB, the W 0, B0 gauge eigenstates mix to give mass eigenstates Z0 and γ. The
corresponding gaugino mixtures of W̃ 0 and B̃0 are called zino (Z̃0) and photino (γ̃). If
susy were unbroken, they would be mass eigenstates with masses mZ and 0. Table 5.2
summarizes the vector supermultiplets of the MSSM.

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 5.2: Gauge supermultiplets in the MSSM.
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5.2 The Superpotential and R-parity

The interaction content of the MSSM is also minimal. As we have seen in section 3.3, all
the non-gauge interactions in susy theories are encoded in the superpotential, an analytic
function of order 3 in the chiral complex fields. The superpotential for the MSSM is:

WMSSM = U cyuQHu −DcydQHd −EcyeLHd + µHuHd , (5.1)

where tildes on the scalar fields of the chiral supermultiplets are omitted. The dimen-
sionless Yukawa coupling parameters yu,yd,ye are 3×3 matrices in family space. The
gauge and family indices in (5.1) are suppressed. The “µ term” can be written as
µ(Hu)α(Hd)βǫ

αβ, where ǫαβ is used to sum over SU(2)L indices α, β = 1, 2 in a gauge
invariant way (watch out: these are not spinor indices!). Likewise, the term U cyuQHu

can be written as (U c)ia (yu)i
j (Q)jαa (Hu)βǫ

αβ , where i = 1..3 is the family index, and
a = 1..3 is the color index which is lowered (raised) in the 3 (3) representation of SU(3)C .

The µ term in (5.1) is the susy version of the SM Higgs boson mass. It is unique,
because terms like H†

uHu or H†
dHd are forbidden in the superpotential, which must be

analytic in the scalar fields. We can also see from (5.1) why two Higgs doublets are
needed: Since the superpotential must be analytic, the U cQHu term cannot be replaced
by U cQH†

d. Similarly, the DcQHd and EcLHd terms cannot be replaced by DcQH†
u and

EcLH†
u. So we need both Hu and Hd in order to give Yukawa couplings, and thus masses,

to all quarks and charged leptons, even without invoking the argument based on anomaly
cancellation mentioned in the previous section.

The Yukawa matrices determine the current masses and CKM mixing angles of the
ordinary quarks and leptons, after the neutral scalar components of Hu and Hd get vevs.
Since the top quark, bottom quark and tau lepton are the heaviest fermions in the SM,
it is often useful to make an approximation that only the (3, 3) family components of yu,
yd and ye are important:

yu ≈




0 0 0
0 0 0
0 0 yt


 , yd ≈




0 0 0
0 0 0
0 0 yb


 , ye ≈




0 0 0
0 0 0
0 0 yτ


 . (5.2)

In this limit, only the third family and Higgs fields contribute to the MSSM superpo-
tential. It is instructive to rewrite it in terms of the SU(2)L components Q3 = (tL , bL),
L3 = (ντ , τL), Hu = (H+

u , H0
u), Hd = (H0

d , H
−
d ), U c

3 = tcR, Dc
3 = bcR and Ec

3 = τ cR:

WMSSM ≈ yt(t
c
RtLH

0
u − bcRbLH

+
u ) − yb(b

c
RtLH

−
d − bcRbLH

0
d)

−yτ (τ cRντH−
d − τ cRτLH

0
d) + µ(H+

u H
−
d −H0

uH
0
d) . (5.3)

The minus signs inside the parentheses appear because of the antisymmetry of the ǫαβ

tensor used to tie up the SU(2)L indices. The other minus signs in (5.1) were chosen so
that the terms ytt

c
RtLH

0
u, ybb

c
RbLH

0
d , and yττ

c
RτLH

0
d , which become the top, bottom and

tau masses when H0
u and H0

d get vevs, have positive signs in (5.3).
The MSSM superpotential (5.1) is minimal in the sense that it is sufficient to pro-

duce a phenomenologically viable model. There are, however, other gauge invariant and
renormalizable terms that are analytic and of order 3 in the chiral scalar fields:

W6Rp
= λijkLiLjE

c
k + λ′ijkLiQjD

c
k + µ′

iLiHu + λ′′ijkU
c
iD

c
jD

c
k , (5.4)
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Figure 5.1: Proton decay to e+π0

mediated by a down-type squark.
The arrows on propagators are omit-
ted for simplicity, and external
fermion labels refer to physical states
rather than two component spinors.
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where family indices i, j, k = 1..3 have been restored. The chiral supermultiplets Qi carry
baryon number B = +1/3 while U c

i , D
c
i carry B = −1/3 and all others have B = 0.

Similarly, the total lepton number is L = +1 for Li, L = −1 for Ec
i and L = 0 for all

others. Hence, the three first terms in (5.4) violate L by one unit (as well as the individual
lepton flavors) while the last term violates B by one unit.

The possible existence of such terms is rather disturbing, since processes violating B
or L have never been observed experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate B and L by one
unit. If both λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the
proton would be extremely short. For example, Feynman diagrams like the one in fig. 5.1
would lead to p+ → e+π0. As a rough estimate based on dimensional analysis, the partial
width for the proton decay of fig. 5.1 is:

Γ(p→ e+π0) ∼ m5
p

∑

i

|λ′11iλ′′11i|2
m4

edc
Ri

, (5.5)

which would be substantial if the couplings were of order unity and the squarks masses
of order 1 TeV. In contrast, the decay time of the proton is known experimentally to
be in excess of 1032 years. Therefore, λ′11i or λ′′11i must be extremely small. Many other
processes also give strong constraints on the violation of lepton and baryon numbers.

One could take B and L conservation as a postulate in the MSSM. However, this is
clearly a step backward from the SM, where the conservation of these quantum numbers
is not assumed, but is rather a pleasantly accidental consequence of the fact that there
are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a problem in treating B and L as fundamental symmetries, since they are known to
be necessarily violated by non-perturbative electroweak effects, which are negligible for
experiments at ordinary energies but might be relevant in the early universe. Therefore,
in the MSSM one adds a new symmetry, which eliminates the possibility of B and L
violating terms in the renormalizable superpotential, while allowing the terms in (5.1).
This new symmetry, called R-parity, is multiplicatively conserved and defined by:

Rp = (−1)3(B−L)+2s , (5.6)

where s is the spin of the particle. One quickly finds that Rp is +1 for all SM particles
and −1 for their superpartners (also called sparticles). Hence, it is clear that the terms
in (5.4) do not conserve Rp, while the terms in (5.1) do. The conservation of Rp implies
that SM particles cannot mix with their superpartners. In addition, it can be shown
that every interaction vertex resulting from (5.1) contains an even number of sparticles
(i.e. 0 or 2). This is also true for gauge interactions and has three extremely important
phenomenological consequences:
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• The lightest sparticle, called the “lightest susy particle” or LSP, must be absolutely
stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so make an attractive candidate for the non-baryonic dark matter that
is required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains
an odd number of LSP’s (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually
in pair).

The LSP must lack electromagnetic and strong interactions, otherwise, LSP’s surviving
from the Big Bang era would have bound to nuclei forming objects with highly unusual
charge to mass ratios. Searches for such exotics have excluded all models with stable
charged or strongly interacting particles unless their mass exceeds several TeV, which
is unacceptably high for the LSP if susy is supposed to solve the hierarchy problem.
An important implication is that in collider experiments LSP’s will carry away energy
and momentum while escaping detection. Since all sparticles are pair-produced and each
decays into at least one LSP (plus SM particles), it follows that at least twice the mass
of the LSP will turn up as missing energy in every susy events. In e+e− machines (like
LEP or ILC), the total visible energy and momentum can be well measured, and the
beams have very small spread, so that the missing energy and momentum can be well
correlated with the energy and momentum of the LSP’s. In hadron colliders (as the LHC),
the distribution of energy and longitudinal momentum of the partons (i.e. quarks and
gluons) is very broad, so in practice only the missing transverse momentum (or missing
transverse energy 6ET) is useful.

The conservation of Rp is imposed in the MSSM. While this decision seems to be well-
motivated phenomenologically by proton decay constraints and the fact that the LSP
provides a good dark matter candidate, it might appear somewhat artificial from a the-
oretical point of view. After all, the MSSM would not suffer any internal inconsistency
if we did not impose Rp conservation. Furthermore, it is fair to ask why Rp should be
exactly conserved, given that the discrete symmetries in the SM are known to be broken
(namely the ordinary parity P , the charge conjugation C and the time reversal T which
are individually broken although their product CPT is always conserved). Fortunately,
it is sensible to formulate Rp as a discrete symmetry that is exactly conserved. In gen-
eral, exactly conserved discrete gauge symmetries can exist provided that they satisfy
certain anomaly cancellation conditions (much like continuous gauge symmetries). One
particularly attractive way this could occur is if B−L is a continuous gauge symmetry
that is spontaneously broken at some very high energy scale. A continuous U(1)B−L for-
bids the renormalizable terms that violate B and L, but this gauge symmetry must be
spontaneously broken, since there is no corresponding massless vector boson. However,
if U(1)B−L is broken by a scalar vev that carries an even integer value of 3(B − L), then
Rp will automatically survive as an exactly conserved discrete remnant subgroup. It may
also be possible to have discrete gauge symmetries that do not owe their exact conser-
vation to an underlying continuous gauge symmetry, but rather to some other structure
such as can occur in string theory. Finally, it is also possible that Rp is broken after all,
with strongs constraints however on Rp violating terrms in (5.4), or replaced by some
alternative discrete symmetry.
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5.3 Soft Susy Breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft susy breaking terms.
In section 4.3, we learned how to write down the most general set of such terms. Applying
this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−
(
ũcR au Q̃Hu − d̃cR ad Q̃Hd − ũeR ae L̃Hd + c.c.

)

−Q̃† m2
Q Q̃− L̃† m2

L L̃− ũcR m2
U ũ

c†
R − d̃cR m2

D d̃
c†
R − ẽcR m2

E ẽ
c†
R

−m2
Hu
H†
uHu −m2

Hd
H†
dHd − (bHuHd + c.c.) , (5.7)

where the adjoint representation gauge indices on the wino and gluino fields, as well as
the gauge indices on all the chiral supermultiplet fields have been suppressed. In the first
line, M1, M2, M3 are the bino, wino, and gluino masses . The second line contains the
scalar trilinear couplings of the type aijk in (4.32). Each of au, ad, ae is a complex 3 × 3
matrix in family space, with dimensions of [mass]. They are in one-to-one correspondence
with the Yukawa couplings of the superpotential. The third line consists of squark and
slepton mass terms of the (m2)ji type in (4.32). The 3 × 3 matrices in family space m2

Q,
m2

U, m2
D, m2

L and m2
E can have complex entries, but they must be hermitian so that the

Lagrangian is real. Finally, in the last line we have soft susy breaking contributions to the
Higgs potential: m2

Hu
and m2

Hd
are squared mass terms of the (m2)ji type, while b is the

only squared mass term of the type bij in (4.32) that can occur in the MSSM. As argued
in section 4.3, we expect:

M1, M2, M3, au, ad, ae ∼ msoft ,

m2
Q, m

2
L, m

2
U, m

2
D, m

2
E, m

2
Hu
, m2

Hd
, b ∼ m2

soft , (5.8)

with msoft not much larger than 1 TeV.
Unlike the susy preserving part of the Lagrangian, the above LMSSM

soft introduces many
new parameters that were not present in the SM. A careful count reveals that there are
105 real parameters (including possible phases) in the MSSM Lagrangian that cannot be
rotated away by redefining the phases and flavor basis for the quark and lepton super-
multiplets, and that have no counterpart in the SM. Thus, in principle, susy breaking
(as opposed to susy itself) appears to introduce a tremendous arbitrariness in the La-
grangian. Moreover, most of the new parameters in (5.7) imply flavor changing neutral
currents (FCNC) or CP violating processes, both severely restricted by experiment.

These potentially dangerous effects can be evaded if one assumes that susy breaking
is suitably “flavor blind”. Consider a limit in which the squark and slepton squared mass
matrices are diagonal in family space and degenerate for the two first families:

m2
Q =



m2
Q1

0 0
0 m2

Q1
0

0 0 m2
Q3


 , m2

U =



m2
U1

0 0
0 m2

U1
0

0 0 m2
U3


 , m2

D =



m2
D1

0 0
0 m2

D1
0

0 0 m2
D3


 ,

m2
L =



m2
L1

0 0
0 m2

L1
0

0 0 m2
L3


 , m2

E =



m2
E1

0 0
0 m2

E1
0

0 0 m2
E3


 . (5.9)
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Then susy contributions to FCNC will be very small, up to flavor mixings induced by
au, ad, ae. Making the further assumption that the scalar trilinear couplings are each
proportional to the corresponding Yukawa coupling matrices:

au = Au yu ≈




0 0 0
0 0 0
0 0 ytAu


 , ad = Ad yd ≈




0 0 0
0 0 0
0 0 ybAd


 ,

ae = Ae ye ≈




0 0 0
0 0 0
0 0 yτAe


 , (5.10)

will ensure that only the squarks and sleptons of the third family can have large trilinear
couplings. Finally, one can avoid disastrously large CP violating effects by assuming that
the soft parameters do not introduce new complex phases. This is automatic for scalar
mass terms if (5.9) is assumed (if the soft masses were not real, the Lagrangian would not
be real). One can also fix µ in the superpotential and b in (5.7) to be real, by appropriate
phase rotations of fermion and scalar components of the Hu and Hd supermultiplets. If
one then assumes that

arg(M1), arg(M2), arg(M3), arg(Au0), arg(Ad0), arg(Ae0) = 0 or π, (5.11)

then the only CP violating phase in the theory will be the usual CKM phase found
in the ordinary Yukawa couplings. The conditions (5.9)-(5.11) make up what is called
the hypothesis of Minimal Flavor Violation and the resulting model is referred to as
Phenomenological MSSM. It has far fewer parameters than the most general MSSM.
Besides the usual SM gauge and Yukawa coupling parameters, there are 3 gaugino masses,
10 squark and slepton squared masses, 3 scalar trilinear coupling parameters, and 4 Higgs
mass parameters (one of which can be traded for the known EWSB scale), hence a total
of 19 independent parameters.

One can further decrease the number of parameters of the MSSM by making assump-
tions on how spontaneous susy breaking is transmitted from the hidden sector where it
occurs to the visible sector where we live. Suppose that the spontaneous susy breaking
sector connects with the MSSM only (or dominantly) through gravitational-strength in-
teractions. This means that the effective Lagrangian contains non-renormalizable terms
that communicate between the two sectors and are suppressed by powers of the Planck
mass MPlanck:

LNR = − 1

MPlanck
F

(
1

2
faλ

aλa +
1

6
y′ijkφiφjφk +

1

2
µ′ijφiφj

)
+ c.c.

− 1

M2
Planck

FF †kijφiφ
†j , (5.12)

where F is the auxiliary field of a chiral supermultiplet in the hidden sector which gets
a non-trivial vev (therefore breaking susy spontaneously), φi and λa are the scalar and
gaugino fields in the MSSM, fa, y′ijk, kij are dimensionless constants and µ′ij is a constant

with dimensions of [mass]. Now if one assumes that
√
〈F 〉 ∼ 1011 GeV, then LNR will

give us a Lagrangian of the form LMSSM
soft in (5.7), with soft terms of order:

msoft ∼
〈F 〉

MPlanck
∼ 1 TeV . (5.13)
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The parameters fa, k
i
j, y

′ijk and µ′ij in LNR are to be determined by the underlying
theory. This is a difficult enterprise in general, but a dramatic simplification occurs if one
assumes a “minimal” form for the normalization of kinetic terms and gauge interactions
in the full (non-renormalizable) supergravity Lagrangian. In that case, there is a common
fa = f for the three gauginos, kij = kδij is the same for all scalars, and the other couplings
are proportional to the corresponding superpotential parameters, so that y′ijk = αyijk

and µ′ij = βµij with universal dimensionless constants α and β. Then the soft terms in
LMSSM

soft are all determined by just four parameters:

M1/2 = f
〈F 〉

MPlanck
, m2

0 = k
|〈F 〉|2
M2

Planck

, A0 = α
〈F 〉

MPlanck
, B = β

〈F 〉
MPlanck

. (5.14)

In terms of these quantities, the parameters appearing in (5.7) are:

M3 = M2 = M1 = M1/2 ,

m2
Q = m2

U = m2
D = m2

L = m2
E = m2

0 1 ,

m2
Hu

= m2
Hd

= m2
0 , b = Bµ ,

au = A0yu , ad = A0yd , ae = A0ye . (5.15)

This assumption is called universality and the resulting model minimal supergravity
(mSUGRA). It is a matter of some controversy whether universality is well-motivated
on theoretical grounds, but from a phenomenological perspective it is clearly very nice.
This framework successfully evades the most dangerous types of FCNC processes as (5.15)
is just a stronger versions of (5.9) and (5.10). If M1/2, A0 and B all have the same complex
phase, then (5.11) will also be satisfied and the susy CP problem solved. Therfore, the
parameters of mSUGRA are m0, M1/2, A0, B and µ (plus the already measured gauge
and Yukawa couplings of the SM). Using the EWSB conditions, i.e. the minimization
equations for the two neutral Higgs vevs (〈H0

u〉, 〈H0
d〉) one can trade B and µ (up to its

sign) for the known value of mZ , proportional to the sum of the Higgs vevs squared, and
the ratio of the Higgs vevs, called tanβ (cf. section 6.2). Hence, one is left with 4 free
parameters and a sign:

M1/2 , m0 , A0 , tanβ , sign(µ) . (5.16)

Particular models of gravity-mediated susy breaking can be even more predictive, relating
some of the parameters M1/2, m

2
0, A0 and B to each other and to the gravitino mass m3/2.

Three popular kinds of models for the soft terms are:

• Polonyi: m2
0 = m2

3/2, A0 = (3 −
√

3)m3/2, M1/2 = m3/2;

• Dilaton-dominated: m2
0 = m2

3/2, M1/2 = −A0 =
√

3m3/2;

• No-scale: M1/2 ≫ m0, A0, m3/2.

Dilaton-dominated and no-scale models arise in a particular limits of superstring theory,
while the Polonyi model is the simplest model of susy breaking in the hidden sector.

Of course, universality is usually assumed at a very high scale Q0 ≈ MPlanck. To
compute the low energy MSSM parameters and the sparticle spectrum, one needs to
use (5.15) as boundary conditions for the Renormalization Group Equations (RGEs) at
the scale MPlanck and integrate these coupled differential equations down to the scale
Mweak, as we shall do in the next chapter.
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6 The Mass Spectrum of the MSSM

6.1 Renormalization Group Equations

In order to translate a set of predictions for the susy parameters at a high energy scale Q0

like MPlanck into physically meaningful quantities describing physics at a low energy scale
Mweak, it is necessary to evolve the gauge couplings, superpotential parameters, and soft
terms using their renormalization group equations (RGEs). The couplings and masses
appearing in the Lagrangian are then treated as running parameters depending on the
renormalization scale Q and conditions like (5.15) are boundary conditions for the RGEs
at the scale Q0. The RGEs are coupled differential equations for all the parameters as a
function of t ≡ ln(Q/Q0). This procedure ensures that the loop expansions for calculations
of low energy observables will not suffer from very large logarithms ln(Q0/Mweak) which
are resummed by the RGEs.

Some care is required in choosing regularization and renormalization schemes in susy.
The most popular regularization method for computations of radiative corrections within
the SM is dimensional regularization (DREG), in which the number of spacetime dimen-
sions is extended to d = 4 − 2ǫ. Unfortunately, DREG introduces a violation of susy,
because it has a mismatch between the gauge boson and the gaugino degrees of freedom
off-shell. This mismatch is only 2ǫ, but can be multiplied by factors up to 1/ǫn in an n
loop calculation. Instead, one uses the slightly different scheme known as regularization
by dimensional reduction, or DRED, which does respect susy. In the DRED method,
all momentum integrals are still performed in d = 4 − 2ǫ dimensions, but the 4-vector
index µ on the gauge boson fields Aaµ now runs over all 4 dimensions to maintain the
match with the gaugino degrees of freedom. Running parameters are then renormalized
using DRED with modified minimal subtraction (DR) rather than the usual DREG with
modified minimal subtraction (MS). However, at one loop the RGEs are the same in the
two schemes.

A general and powerful result in susy theories, known as the non-renormalization
theorem, states that the logarithmically divergent contributions to any process can always
be written in terms of wave-function renormalizations, without any vertex renormalization
(it can be proved most easily using superfield techniques). For the parameters appearing
in the superpotential (3.44), this implies:

d

dt
yijk = γiny

njk + γjny
ink + γkny

ijn ,
d

dt
M ij = γinM

nj + γjnM
in ,

d

dt
Li = γinL

n , (6.1)

where the γij are anomalous dimension matrices for the supermultiplets i, j which have to
be calculated in a perturbative loop expansion. The anomalous dimensions and RGEs for
softly broken susy are known up to three loop order, with some partial four loop results.
Here we will only use the one loop approximation, for simplicity:

γij =
1

16π2

[
1

2
yimny∗jmn − 2g2

aCa(i)δ
i
j

]
, (6.2)

where Ca(i) are the quadratic Casimir group theory invariants for the supermultiplet
Φi = (φi, ψi, Fi), defined in terms of the Lie algebra generators T a by:

(T aT a)i
j = Ca(i)δ

j
i , (6.3)
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with gauge couplings ga. Explicitly, for the MSSM supermultiplets:

C3(i) =
{

4/3 for Φi = Q,U c, Dc

0 for Φi = L,Ec, Hu, Hd
C2(i) =

{
3/4 for Φi = Q,L,Hu, Hd

0 for Φi = U c, Dc, Ec

C1(i) = 3Y 2
i /5 for each Φi with weak hypercharge Yi . (6.4)

The normalization for the hypercharge is chosen to agree with the canonical covariant
derivative for grand unification of the SM gauge group SU(3)C × SU(2)L × U(1)Y into
SU(5) or SO(10). Starting with the superpotential (5.1) it is easy to compute the anoma-
lous dimension for all the chiral supermultiplets of the MSSM using (6.2). Putting this
into (6.1) one then obtains the RGEs for the Yukawa couplings and the µ term.

For a general susy model, the one loop RGEs for gauge couplings are:

d

dt
ga =

1

16π2
g3
a

[∑

i

Ia(i) − 3Ca(G)
]
, (6.5)

where Ca(G) is the quadratic Casimir invariant of the group (0 for U(1), and N for
SU(N)), and Ia(i) is the Dynkin index of the chiral supermultiplet Φi, normalized to 1/2
for each fundamental representation of SU(N) and to 3Y 2

i /5 for U(1). In the special case
of the MSSM, the one loop RGEs for gauge couplings are:

d

dt
ga =

1

16π2
bag

3
a , (b1, b2, b3) = (33/5, 1, −3) . (6.6)

Hence, the αa = g2
a/4π have the nice property that their inverse run linearly with the

renormalization scale at one loop order:

d

dt
α−1
a = − ba

2π
(6.7)

Figure 6.1 compares the RG evolution of α−1
a , including two loop effects, in the SM and

the MSSM. Unlike the SM, the MSSM includes just the right particle content to ensure
that the gauge couplings can unify, at a scale MU ∼ 2 × 1016 GeV. While the apparent
unification of gauge couplings at MU might be just an accident, it may also be taken as a
strong hint in favor of a grand unified theory (GUT) or superstring models, both of which
can naturally accommodate gauge coupling unification below MPlanck. Furthermore, if
this hint is taken seriously, then we can reasonably expect to be able to apply a similar
RGE analysis to the other MSSM couplings and soft masses as well.

Figure 6.1: Evolution of the inverse
gauge couplings α−1

a (Q) in the SM
(dashed lines) and the MSSM (solid
lines). In the MSSM case, the spar-
ticle mass thresholds are varied be-
tween 250 GeV and 1 TeV, and
α3(mZ) between 0.113 and 0.123.
Two loop effects are included.
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The one loop RGEs for the general soft susy breaking parameters in (4.32) are:

d

dt
Ma =

1

16π2
g2
a

[
2
∑

n

Ia(n) − 6Ca(G)
]
Ma ,

d

dt
aijk =

1

16π2

[
1

2
aijpy∗pmny

kmn + yijpy∗pmna
mnp + g2

aCa(i)(4May
ijk − 2aijk)

]

+(i↔ k) + (j ↔ k) ,

d

dt
bij =

1

16π2

[
1

2
bipy∗pmny

jmn +
1

2
yijpy∗pmnb

mn +M ipy∗pmna
mnj

+g2
aCa(i)(4MaM

ij − 2bij)

]
+ (i↔ j) ,

d

dt
(m2)ji =

1

16π2

[
1

2
y∗ipqy

pqn(m2)jn +
1

2
yjpqy∗pqn(m

2)ni + 2y∗ipqy
jpr(m2)qr

+a∗ipqa
jpq − 8g2

aCa(i)|Ma|2δji + 2g2
a(T

a)i
jTr(T am2)

]
. (6.8)

Applying the above results to the special case of the MSSM, with soft terms given by (5.7),
is straightforward. In particular, the one loop RGEs for the three gaugino mass parameters
in the MSSM are determined by the same ba that appear in the gauge coupling RGEs (6.6):

d

dt
Ma =

1

8π2
bag

2
aMa a = 1..3 . (6.9)

It follows that the ratios Ma/g
2
a are scale independent up to small two loop corrections.

Since the gauge couplings unify at Q = MU , it is natural to assume that the gaugino
masses also unify to a value M1/2 near that scale. In GUT models, it is automatic that the
gauge couplings and gaugino masses are unified at scales Q ≥ MU , because the gauginos
all live in the same representation of the unified gauge group. In many superstring models,
this can also be a good approximation.

Taking into account only the third family Yukawa couplings, the one loop RGEs for
the soft Higgs squared mass parameters m2

Hu
and m2

Hd
are:

d

dt
m2
Hu

=
1

16π2

[
3Xt − 6g2

2|M2|2 −
6

5
g2
1|M1|2 +

3

5
g2
1S

]
,

d

dt
m2
Hd

=
1

16π2

[
3Xb +Xτ − 6g2

2|M2|2 −
6

5
g2
1|M1|2 +

3

5
g2
1S

]
,

where S = m2
Hu

−m2
Hd

+ Tr[m2
Q −m2

L − 2m2
U + m2

D + m2
E] .

Xt = 2|yt|2(m2
Hu

+m2
Q3

+m2
U3

) + 2|at|2 ,
Xb = 2|yb|2(m2

Hd
+m2

Q3
+m2

D3
) + 2|ab|2,

Xτ = 2|yτ |2(m2
Hd

+m2
L3

+m2
E3

) + 2|aτ |2 . (6.10)

Note that Xt, Xb, and Xτ are generally positive (at least at a high scale where all the
soft scalar squared masses are fixed to be positive), so their effect is to decrease the Higgs
masses as one evolves the RGEs down from the high energy input scale to the scale Mweak.
If yt is the largest of the Yukawa couplings, as suggested by the experimental fact that the
top quark is heavy, then Xt will typically be much larger than Xb and Xτ . This causes
m2
Hu

to run negative near Mweak, helping to destabilize the point Hu = Hd = 0 and so
inducing EWSB.
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6.2 EWSB and the Higgs Sector

In the MSSM, the description of EWSB is slightly complicated by the fact that there are
two complex Higgs doublets Hu = (H+

u , H
0
u) and Hd = (H0

d , H
−
d ) rather than just one as

in the SM. The classical potential for the Higgs scalar fields in the MSSM is given by:

V = (|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd

)(|H0
d |2 + |H−

d |2)

+ [b (H+
u H

−
d −H0

uH
0
d) + c.c.] +

1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |2

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 . (6.11)

The terms proportional to |µ|2 come from F terms. The terms proportional to g2 and
g′2 are the D term contributions, obtained from the general formula (4.17) after some
rearranging. Finally, the terms proportional to m2

Hu
, m2

Hd
and b are just a rewriting of

the last three terms of the MSSM soft susy breaking Lagragian (5.7). The full scalar
potential of the theory also includes many terms involving the squark and slepton fields.
However, we can ignore them as they do not get vevs because they have large positive
squared masses.

We now have to check that the minimum of this potential breaks SU(2)L×U(1)Y down
to U(1)EM. The freedom to make SU(2)L gauge transformations allows us to rotate away
a possible vev for one of the scalar fields, so without loss of generality we can take H+

u = 0
at the minimum of the potential. Then, one can check that a minimum of the potential
satisfying ∂V/∂H+

u = 0 must also have H−
d = 0. This means that electromagnetism is

unbroken. We are then left to consider the scalar potential for the neutral Higgs fields:

V = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − (bH0
uH

0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2 . (6.12)

The only term in this potential depending on the phases of the fields is the b term. There-
fore, a redefinition of the phase of Hu or Hd can absorb any phase in b, so we can take b to
be real and positive. It is then clear that H0

uH
0
d is also real and positive at the minimum,

so 〈H0
u〉 and 〈H0

d〉 must have opposite phases. We can therefore use a U(1)Y gauge trans-
formation to make them both real and positive without loss of generality, since Hu and
Hd have opposite weak hypercharges (±1/2). It follows that CP cannot be spontaneously
broken by the Higgs scalar potential, since the vevs and b can be simultaneously chosen
real, as a convention. This means that the Higgs scalar mass eigenstates can be assigned
well-defined eigenvalues of CP.

We must now make sure that the potential is bounded from below for arbitrarily
large values of the scalar fields, so that V has a true minimum. (Recall that susy scalar
potentials are always ≥ 0, therefore bounded from below. But now we have introduced soft
susy breaking, so we must be careful.) The scalar quartic interactions in V will stabilize
the potential for almost all arbitrarily large values of H0

u and H0
d . However, for the special

directions in field space |H0
u| = |H0

d |, the quartic contributions to V (second line in (6.12))
are identically zero. Such directions in field space are called D-flat directions, because
along them the D terms vanish. In order for the potential to be bounded from below, we
need the quadratic part of the scalar potential to be positive along the D-flat directions.
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This requirement amounts to:

0 < 2b < 2|µ|2 +m2
Hu

+m2
Hd

. (6.13)

Hence (|µ|2 + m2
Hu

) and (|µ|2 + m2
Hd

) cannot both be negative. This implies that the
origin H0

u = H0
d = 0 cannot be a maximum of V . If (|µ|2 + m2

Hu
) and (|µ|2 + m2

Hd
) are

both positive then the origin is a minimum (which would lead to an unwanted symmetry
preserving solution) unless:

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

) , (6.14)

which is the condition for the origin to be a saddle point. The last condition is automati-
cally satisfied if either (|µ|2 +m2

Hu
) or (|µ|2 +m2

Hd
) is negative, but this is not necessary.

The b term favors EWSB but it is not required to be non-zero. On the other hand, if
m2
Hu

= m2
Hd

then the constraints (6.13) and (6.14) cannot both be satisfied. In particular
if susy is not broken and m2

Hu
= m2

Hd
= 0 the EWSB does not occur. In models with

universal soft terms, m2
Hu

= m2
Hd

is supposed to hold at the input scale, but the Xt

contribution to the RGE (6.10) for m2
Hu

naturally pushes it to negative or small values
m2
Hu

< m2
Hd

at the scale Mweak. So in these models EWSB is actually driven by quantum
corrections. This mechanism is known as radiative electroweak symmetry breaking. Note
that even if m2

Hu
< 0, there may be no EWSB if |µ| is too large or if b is too small. Still,

the large negative contribution to m2
Hu

from its RGE is an important factor in ensuring
that EWSB can occur in models with simple boundary conditions for the soft terms.
The fact that this works most naturally with a large top-quark Yukawa coupling provides
additional motivation for these models.

Having established the conditions necessary for H0
u and H0

d to get non-zero vevs, let
us write:

vu = 〈H0
u〉 , vd = 〈H0

d〉 . (6.15)

These vevs are related to the known mass of the Z0 boson and the electroweak gauge
couplings through the kinetic energy terms for the Higgs fields with the proper covariant
derivatives:

v2
u + v2

d = v2 = 2m2
Z/(g

2 + g′2) ≈ (174 GeV)2 . (6.16)

The ratio of the vevs is traditionally written as:

tanβ ≡ vu/vd . (6.17)

The value of tanβ is not fixed by present experiments, but it depends on the Lagrangian
parameters of the MSSM in a calculable way. Since vu = v sinβ and vd = v cosβ were
taken to be real and positive by convention, we have 0 < β < π/2, a requirement that will
be sharpened below. Now one can write down the conditions ∂V/∂H0

u = ∂V/∂H0
d = 0

under which the potential (6.12) will have a minimum satisfying (6.16) and (6.17):

m2
Hu

+ |µ|2 − b cotβ − (m2
Z/2) cos(2β) = 0 ,

m2
Hd

+ |µ|2 − b tanβ + (m2
Z/2) cos(2β) = 0 . (6.18)

It is easy to check that these equations indeed satisfy the necessary conditions (6.13)
and (6.14). They allow us to eliminate the two Lagrangian parameters b and |µ| in favor
of tanβ and the known value of mZ , but do not determine the phase of µ (or its sign if µ
is assumed to be real).
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The Higgs scalar fields in the MSSM consist of two complex SU(2)L doublets, or eight
real scalar degrees of freedom. After EWSB, three of them are the would-be Goldstone
bosons G0, G±, which become the longitudinal modes of the Z0 and W± massive vector
bosons. The remaining five Higgs scalar mass eigenstates consist of two CP-even neutral
scalars h0 and H0 (by convention, h0 is lighter than H0), one CP-odd neutral scalar
A0, and a charge +1 scalar H+ and its conjugate charge −1 scalar H− (G− = G+∗ and
H− = H+∗). The gauge eigenstates can be expressed in terms of the mass eigenstates as:
(
H0
u

H0
d

)
=

(
vu
vd

)
+

1√
2
Rα

(
h0

H0

)
+

i√
2
Rβ0

(
G0

A0

)
,

(
H+
u

H−∗
d

)
= Rβ±

(
G+

H+

)
, (6.19)

where the orthogonal rotation matrices:

Rα =

(
cosα sinα
− sinα cosα

)
, Rβ0

=

(
cosβ0 sinβ0

− sinβ0 cosβ0

)
, Rβ± =

(
cosβ± sinβ±
− sinβ± cosβ±

)
, (6.20)

are chosen so that the quadratic part of the potential has diagonal squared masses:

V =
1

2
m2
h0(h0)2 +

1

2
m2
H0(H0)2 +

1

2
m2
G0(G0)2 +

1

2
m2
A0(A0)2

+m2
G±|G+|2 +m2

H± |H+|2 + . . . , (6.21)

Then, provided that vu, vd minimize the tree level potential, one finds β0 = β± = β and:

m2
G0 = m2

G± = 0 ,

m2
A0 = 2b/ sin(2β) = 2|µ|2 +m2

Hu
+m2

Hd
,

m2
h0,H0 =

1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 −m2

Z)2 + 4m2
Zm

2
A0 sin2(2β)

)
,

m2
H± = m2

A0 +m2
W . (6.22)

The mixing angle α is determined, at tree level, by:

sin(2α)

sin(2β)
= −

(
m2
H0 +m2

h0

m2
H0 −m2

h0

)
,

tan(2α)

tan(2β)
=

(
m2
A0 +m2

Z

m2
A0 −m2

Z

)
, (6.23)

and is traditionally chosen to be negative, hence −π/2<α<0 (provided mA0 > mZ). In
the so-called decoupling limit where mA ≫ mZ , h0 has the same couplings as would a SM
Higgs boson with the same mass. In this case, α ≃ β − π/2 and (A0, H0, H±) form an
isospin doublet with a common mass much larger that mh0.

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow
with b/ sin(2β). In contrast, the mass of h0 is bounded above. From (6.22), one finds:

mh0 < mZ | cos(2β)| < mZ (6.24)

This is one of the strongest predictions of low energy susy! Alas, this bound is already
ruled out by the current experimental lower bound coming from direct searches at LEP:

mh0 ≥ 114.4 GeV (95% c.l.) . (6.25)

Fortunately the tree level mass formulae derived above receive significant radiative cor-
rections, particularly in the case of the h0, whose mass is shifted upwards by a significant
amount. the main contribution comes from the incomplete cancellation of top quark and
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Figure 6.2: Contributions to the MSSM lightest Higgs mass from top/stop one loop
diagrams. Incomplete cancellation, due to soft susy breaking, leads to a large positive
correction to m2

h0 in the limit of heavy stops.

top squark (also called stop) loops of fig. 6.2, which would cancel in the exact susy limit.
The magnitude of this contribution depends on the stop masses and mixings, which we
shall discuss in the next section. If for simplicity we neglect the stop mixing effects, this
contribution modifies (6.24) by a large positive correction:

δm2
h0 =

3

4π2
y2
tm

2
t ln

(
met1

met2

m2
t

)
, (6.26)

where met1
, met2

are the stop masses. The radiative corrections to the h0 in the MSSM have
been studied in detail by many authors and are now known up to two loops with some
partial three loops results. If soft susy breaking parameters are ≤ 1 Tev, one generally
finds:

mh0 . 140 GeV . (6.27)

This implies that the lightest CP-even Higgs boson of the MSSM should be discovered at
the LHC. If not, then this model will be ruled out, whatever value you may take for its
105 free parameters. However, in extended models, like the NMSSM (Next-to-Minimal
Susy Standard Model) where a gauge singlet supermultiplet is added in the Higgs sector,
the bound (6.27) might be relaxed up to:

mh0 . 200 GeV . (6.28)

Furthermore, in the NMSSM the lightest CP-even Higgs boson might decay only via
h0 → a0a0, where a0 is a CP-odd neutral Higgs state which might be extremely light
(down to a few GeV). This would seriously complicate the task of the LHC to find the h0

and in some cases the LHC would see no Higgs at all! However, sparticles should show
up at the LHC if susy soft breaking terms are ≤ 1 TeV.

In the MSSM, the tree level masses of the quarks and leptons are related to their
Yukawa couplings and the Higgs vevs by:

mt = ytvu = ytv sinβ , mb = ybvd = ybv cosβ , mτ = yτvd = yτv cosβ , (6.29)

It is now clear why we have not neglected yb and yτ , even though mb, mτ ≪ mt. To a
first approximation, yb/yt = (mb/mt) tanβ and yτ/yt = (mτ/mt) tanβ, so that yb and yτ
cannot be neglected if tanβ is large. For example, GUT models based on the gauge group
SO(10) unify the top, bottom and tau Yukawa couplings at the unification scale. This
requires tanβ to be very roughly of order mt/mb. Note that tanβ cannot be too large,
i.e. cosβ cannot be too small, unless yb and yτ would become non perturbatively large.
Similarly, if one tries to make sinβ or tanβ too small, yt will be non perturbatively large.
Requiring that yt, yb and yτ do not blow up above Mweak, one finds:

1 . tanβ . 60 . (6.30)
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6.3 The Sparticle Spectrum

The higgsinos and electroweak gauginos mix with each other because of the effects of
EWSB. The neutral higgsinos (H̃0

u, H̃
0
d) and the neutral gauginos (B̃, W̃ 0) combine to

form four mass eigenstates called neutralinos, χ̃0
i=1..4. By convention, these are labeled in

ascending order, so that meχ0

1
< meχ0

2
< meχ0

3
< meχ0

4
. The lightest neutralino, χ̃0

1, is usually
assumed to be the LSP (unless there is a lighter gravitino or Rp is not conserved) as it
is the only MSSM particle that can make a good dark matter candidate. In the gauge
eigenstate basis ψ0 = (B̃, W̃ 0, H̃0

d , H̃
0
u), the Lagrangian for neutralino masses is:

Lχ0 = −1

2
(ψ0)TMeχ0ψ0 + c.c. , (6.31)

where

Meχ0 =




M1 0 −g′vd/
√

2 g′vu/
√

2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvu/

√
2 −µ 0


 . (6.32)

The diagonal terms are just the gaugino soft masses from (5.7), while the −µ entries
can be traced back to the superpotential (5.1). The off-diagonal terms are the result of
Higgs-higgsino-gaugino couplings, with the Higgs fields replaced by their vevs, and they
are always ≤ mZ . The mass matrix Meχ0 can be diagonalized by a unitary matrix N to
obtain the mass eigenstates:

χ̃0
i = Nijψ

0
j , (6.33)

so that
N∗Meχ0N−1 = diag(meχ0

1
, meχ0

2
, meχ0

3
, meχ0

4
) . (6.34)

In general, M1, M2, and µ can have arbitrary complex phases. A redefinition of the phases
of B̃ and W̃ always allows us to choose a convention in which M1 and M2 are both real and
positive. The phase of µ within this convention is then a physical parameter and cannot
be rotated away. We have already used up the freedom to redefine the phases of the
Higgs fields, since we have picked b, vu and vd to be real and positive. However, if µ is not
real, then there can be potentially disastrous CP-violating effects in low-energy physics,
including electric dipole moments for both the electron and the neutron. Therefore, it is
usual to assume that µ is real in the same set of phase conventions that make M1, M2, b,
vu and vd real and positive. The sign of µ is still undetermined by this constraint. Models
that satisfy universality for the gaugino masses as in (5.15) have the nice prediction:

M1 =
5

3
tan2 θW M2 ≃ 0.5M2 (6.35)

at the scale Mweak. Furthermore, one also usually has:

mZ ≪ |µ±M1|, |µ±M2|, (6.36)

so that ESWB effects can be viewed as small perturbations in the neutralino mass matrix.
Finally, models like mSUGRA usually predict M1 ≃ M2/2 ≪ |µ|. The neutralino mass

eigenstates are then a light “bino-like” state χ̃0
1 ≈ B̃, a “wino-like” state χ̃0

2 ≈ W̃ 0, and

two heavier “higgsino-like” states χ̃0
3, χ̃

0
4 ≈ (H̃0

u ± H̃0
d)/

√
2, with approximative mass

eigenvalues M1, M2 ≃ 2M1 and |µ| (resp.).
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Similarly, the charged higgsinos (H̃+
u , H̃−

d ) and winos (W̃+ and W̃−) mix to form two
mass eigenstates with charge ±1 called charginos, χ̃±

i=1,2 with masses m
eχ±

1

< m
eχ±

2

. In

the gauge eigenstate basis ψ± = (W̃+, H̃+
u , W̃

−, H̃−
d ), the chargino mass terms in the

Lagrangian are:

Leχ± = −1

2
(ψ±)TMeχ±ψ± + c.c. , (6.37)

where, in 2 × 2 block form,

Meχ± =

(
0 XT

X 0

)
, with X =

(
M2 gvu
gvd µ

)
(6.38)

The mass eigenstates are related to the gauge eigenstates by two unitary 2×2 matrices U
and V according to:

(
χ̃+

1

χ̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
χ̃−

1

χ̃−
2

)
= U

(
W̃−

H̃−
u

)
. (6.39)

Note that the mixing matrix for the positively charged left-handed fermions is different
from that for the negatively charged left-handed fermions. They are chosen so that

U∗XV−1 =

(
m

eχ±

1

0

0 m
eχ±

2

)
, (6.40)

with positive real entries m
eχ±

i
. Because these are only 2×2 matrices, it is not hard to

solve for the masses explicitly:

m2
eχ±

1

, m2
eχ±

2

=
1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin(2β)|2
]
. (6.41)

These are the (doubly degenerate) eigenvalues of the 4 × 4 matrix M†

eχ±Meχ±, or equiva-

lently the eigenvalues of X†X, since

VX†XV−1 = U∗XX†UT =

(
m2

eχ±

1

0

0 m2
eχ±

2

)
. (6.42)

But, they are not the squares of the eigenvalues of X. In the limit of (6.36) with M2, µ
real and such that M2 ≪ |µ| the chargino mass eigenstates consist of a wino-like χ̃±

1 and
a higgsino-like χ̃±

2 , with approximate masses M2 and |µ| (resp.).
The gluino is a color octet fermion, so it cannot mix with any other particle in the

MSSM, even if Rp is violated. In this regard, it is unique among all of the MSSM sparticles.
In models with universal gaugino masses like mSUGRA, the gluino mass parameter M3

is related to the bino and wino mass parameters M1 and M2:

M3 =
αs
α

sin2 θW M2 =
3

5

αs
α

cos2 θW M1 (6.43)

at any scale, up to small two loop corrections. This implies roughly:

M3 : M2 : M1 ≈ 6 : 2 : 1 (6.44)

near the TeV scale. It is therefore reasonable to suspect that the gluino is considerably
heavier than the lighter neutralinos and charginos.
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Let us conclude with the squark and slepton masses. In principle, any scalars with the
same electric charge, Rp, and color quantum numbers can mix with each other. This means
that with completely arbitrary soft terms, the mass eigenstates of the squarks and sleptons
should be obtained by diagonalizing three 6×6 squared mass matrices for up-type squarks
(ũL, c̃L, t̃L, ũ

c
R, c̃cR, t̃cR), down-type squarks (d̃L, s̃L, b̃L, d̃cR, s̃cR, b̃cR), and charged sleptons

(ẽL, µ̃L, τ̃L, ẽcR, µ̃cR, τ̃ cR), and one 3× 3 matrix for sneutrinos (ν̃e, ν̃µ, ν̃τ ). Fortunately, the
general hypothesis of flavor blind soft parameters (5.9) and (5.10) predicts that most of
these mixing angles are very small. The third family squarks and sleptons can have very
different soft masses compared to their two first family counterparts, because of the effects
of large Yukawa (yt, yb, yτ ) and soft (at, ab, aτ ) couplings in the RGEs. Furthermore,

they can have substantial mixing in pairs (t̃L, t̃
c
R), (̃bL, b̃

c
R) and (τ̃L, τ̃ cR). In contrast, the

two first family squarks and sleptons have negligible Yukawa couplings, so they end up
in 7 very nearly degenerate, unmixed pairs (ẽcR, µ̃

c
R), (ν̃e, ν̃µ), (ẽL, µ̃L), (ũcR, c̃

c
R), (d̃cR, s̃

c
R),

(ũL, c̃L) and (d̃L, s̃L). As we have already discussed in section 5.3, this avoids the problem
of disastrously large virtual sparticle contributions to FCNC processes.

The masses of the two first family squarks and sleptons are therefore simply given by
their soft masses plus a term due to the EWSB. Indeed, when the neutral Higgs scalars H0

u

and H0
d get vevs, each squark and slepton φ will get a contribution ∆φ to its squared mass

coming from the SU(2)L and U(1)Y D term quartic interactions of the form φ2(Higgs)2:

∆φ = (T3φg
2 − Yφg

′2)(v2
d − v2

u) = (T3φ −Qφ sin2 θW ) cos(2β)m2
Z , (6.45)

where T3φ is the third component of weak isospin, Yφ the weak hypercharge, and Qφ the
electric charge of the chiral supermultiplet to which φ belongs. Hence:

m2
eec
R

= m2
eµc

R
= m2

E1
+ ∆eec

R
m2

eνe
= m2

eνµ
= m2

L1
+ ∆eν

m2
eeL

= m2
eµL

= m2
L1

+ ∆eeL
m2

euc
R

= m2
ecc
R

= m2
U1

+ ∆euc
R

m2
edc
R

= m2
esc
R

= m2
D1

+ ∆edc
R

m2
euL

= m2
ecL

= m2
Q1

+ ∆euL

m2
edL

= m2
esL

= m2
Q1

+ ∆edL

(6.46)

Third generation squarks and sleptons will get additional contributions from F terms.
The squared mass matrix for the stops in the gauge eigenstate basis (t̃L, t̃R) reads:

m2
et

=

(
m2
Q3

+m2
t + ∆euL

a∗tvu − µytvd
atvu − µ∗ytvd m2

U3
+m2

t + ∆euc
R

)
. (6.47)

This hermitian matrix can be diagonalized by a unitary matrix to give mass eigenstates:

(
t̃1
t̃2

)
=

(
cet −s∗

et

set cet

)(
t̃L
t̃R

)
. (6.48)

The eigenvalues of m2
et

are m2
et1
< m2

et2
, and |cet|2 + |set|2 = 1. If the off-diagonal elements of

m2
et

are real, then cet and set are the cosine and sine of a stop mixing angle θet, which can be
chosen in the range 0 ≤ θet < π. Because of the large effects proportional to Xt in RGEs
for the stop soft masses, at the weak scale one finds that m2

U3
< m2

Q3
, and both of these

quantities are usually significantly smaller than the soft masses for the two first family
squarks. The diagonal terms m2

t in (6.47) tend to mitigate this effect somewhat, but
the off-diagonal entries will typically induce a significant mixing, which always reduces
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the lighter stop squared mass eigenvalue. Therefore, models often predict that t̃1 is the
lightest squark of all, and that it is predominantly t̃R.

A similar analysis can be performed for the sbottoms and staus, which in their respec-
tive gauge eigenstate bases (̃bL, b̃R) and (τ̃L, τ̃R) have squared mass matrices:

m2
eb

=

(
m2
Q3

+ ∆edL
a∗bvd − µybvu

abvd − µ∗ybvu m2
D3

+ ∆edR

)
,

m2
eτ =

(
m2
L3

+ ∆eeL
a∗τvd − µyτvu

aτvd − µ∗yτvu m2
E3

+ ∆eeR

)
, (6.49)

where we have neglected the diagonal contributions from the F terms, equal to the bottom
and tau squared masses. These mass matrices can be diagonalized to give mass eigenstates
b̃1, b̃2 and τ̃1, τ̃2 in exact analogy with eq. (6.48). For large values of tanβ, the mixing
in (6.49) can be quite significant, because yb, yτ and ab, aτ are non-negligible. Just as in

the case of the stops, the lighter sbottom and stau mass eigenstates (denoted b̃1 and τ̃1)
can then be significantly lighter than their two first family counterparts. Furthermore, ν̃τ
can also be lighter than the degenerate ν̃e, ν̃µ as RGE effects usually yield m2

L3
< m2

L1
at

the weak scale.
We are now ready to display the full MSSM sparticle and Higgs spectrum, fig. 6.3.

The next task will be for experimentalists at the LHC to hunt all these new states and
check that they have all the properties predicted by theorists. Or else you will have read
these lecture notes just for the fun of it!
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Figure 6.3: Schematic mass spectrum for the undiscovered particles of the MSSM in a
typical mSUGRA model.
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7 Exercices

A general advice is to try to redemonstrate all the formulae of these notes (although this
might keep you busy for a substantial amount of time). Here are some selected examples.

7.1 Weyl spinors (beginner)

We take two left-handed (two components) Weyl spinors ψ and χ. Show the following
equalities:

ψχ = χψ , ψ̄χ̄ = χ̄ψ̄ ,

χσµψ̄ = −ψ̄σ̄µχ , (χσµξ̄)† = ξσµχ̄ .

7.2 O’Raifeartaigh model (medium weight)

We consider three chiral supermultiplets φi (i = 1..3) interacting through the superpo-
tential:

W = −kφ1 +mφ2φ3 +
y

2
φ1φ

2
3 , where k, m, y ∈ R

+∗.

1) Compute the the auxiliary fields Fi = −∂W
†

∂φ†
i

.

2) Show that it is impossible to have simultaneously Fi = 0 for i = 1..3.
What does this imply for susy?

3) Write the minimization conditions for the scalar potential V (φi) =

3∑

i=1

|Fi| .

Show that
∂W

∂φ3
= 0 ⇔ ∂V

∂φ1
=
∂V

∂φ2
= 0. Hence, write V as a function of φ3 only.

4) What are the extrema of V (φ3) in the following cases: m2 < ky, m2 ≥ ky?

7.3 MSSM γ functions (heavy weight champion)

Applying the general formula (6.2), show that the one loop γ functions of the MSSM
chiral supermultiplets are:

γHu
=

1

16π2

[
3y2

t −
3

2
g2
2 −

3

10
g2
1

]
, γHd

=
1

16π2

[
3y2

b + y2
τ −

3

2
g2
2 −

3

10
g2
1

]
,

γQ3
=

1

16π2

[
y2
t + y2

b −
8

3
g2
3 −

3

2
g2
2 −

1

30
g2
1

]
, γU3

=
1

16π2

[
2y2

t −
8

3
g2
3 −

8

15
g2
1

]
,

γD3
=

1

16π2

[
2y2

b −
8

3
g2
3 −

2

15
g2
1

]
, γL3

=
1

16π2

[
y2
τ −

3

2
g2
2 −

3

10
g2
1

]
,

γE3
=

1

16π2

[
2y2

τ −
6

5
g2
1

]
.

How can you simply deduce the γ functions for the two first family supermultiplets?
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