One-loop calculations in the Standard Model

VSOP20, Quy Nhon, Vietnam LE Duc Ninh | August 4th 2014

The SM is a correct theory!

- Q: How can we be sure of that?
- A: because everyone is saying that, because it has been well tested, all particles found, etc ...
- Q: how to test a theory? how to discover a particle?

A: Do real experiments and real calculations. Then compare the two numbers.

Lagrangian \rightarrow Monte Carlo simulations:

It is a long way to go. Therefore, we have to do it step by step.

- Lagrangian \rightsquigarrow Feynman rules
- Cross section, distributions (differential cross sections)
- Helicity (polarized) amplitudes
- One-loop calculations, dimensional regularization

Do it YOUR way.

Quantum field theory

A mini review

Classical fields

- scalar fields $\phi(x)$: spin-0 particles
- vector fields $A_{\mu}(x), \mu=\overline{0,3}$ Lorentz index: spin-1 particles
- spinor fields $\psi_{a}(x), a=\overline{1,4}$ spinor index: spin-1/2 particles

$$
\psi(x)=\left(\begin{array}{l}
\psi_{1}(x) \\
\psi_{2}(x) \\
\psi_{3}(x) \\
\psi_{4}(x)
\end{array}\right)
$$

Lagrangian formalism

$$
\begin{array}{r}
\mathcal{L}=\mathcal{L}(x, \dot{x}) \rightsquigarrow \mathcal{L}\left(\phi(x), \partial_{\mu} \phi(x)\right) \\
S[\phi]=\int d^{4} x \mathcal{L} \\
\delta S=S[\phi+\delta \phi]-S[\phi]=0: \quad \text { Hamilton's principle } \tag{3}
\end{array}
$$

Euler-Lagrange equation:

$$
\begin{equation*}
\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}-\frac{\partial \mathcal{L}}{\partial \phi}=0 \tag{4}
\end{equation*}
$$

Natural units: $\hbar=c=1 \rightsquigarrow[x]=1 / E$.
The action is dimensionless: $[\mathcal{L}]=E^{4}$.

Free quantum fields: scalar

$$
\begin{array}{r}
\mathcal{L}=\left(\partial_{\mu} \phi\right)^{\dagger}\left(\partial_{\mu} \phi\right)-m^{2} \phi^{\dagger} \phi \\
\left(\square+m^{2}\right) \phi(x)=0: \quad \text { Klein-Gordon equation } \\
\phi(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d^{3} k}{2 k_{0}}\left[a(k) e^{-i k x}+b^{\dagger}(k) e^{i k x}\right]: \text { operators } \tag{7}
\end{array}
$$

- a, a^{\dagger} : annihilation and creation operators for particle states.
- b, b^{\dagger} : annihilation and creation operators for anti-particle states.

Dimension: $[\phi]=E$.

Free quantum fields: spinor

$$
\begin{array}{r}
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi, \quad \bar{\psi}=\psi^{\dagger} \gamma^{0} \\
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0: \quad \text { Dirac equation } \\
\psi(x)=\frac{1}{(2 \pi)^{3 / 2}} \sum_{\sigma= \pm 1} \int \frac{d^{3} k}{2 k_{0}}\left[c_{\sigma}(k) u_{\sigma}(k) e^{-i k x}+d_{\sigma}^{\dagger}(k) v_{\sigma}(k) e^{i k x}\right]: \quad \text { operators } \\
(k-m) u_{\sigma}(k)=0, \quad(k+m) v_{\sigma}(k)=0 . \tag{11}
\end{array}
$$

Helicity index: $\sigma= \pm 1$.

$$
s_{\sigma}(k)=\left(\begin{array}{c}
s_{\sigma, 1}(k) \tag{12}\\
s_{\sigma, 2}(k) \\
s_{\sigma, 3}(k) \\
s_{\sigma, 4}(k)
\end{array}\right), \quad s=u, v .
$$

$\psi(x)$: summed over two independent helicity states.
Dimension: $[\psi]=E^{3 / 2}$.

Free quantum fields: vector

$$
\begin{array}{r}
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{m^{2}}{2} A_{\mu} A^{\mu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
A^{\mu}(x)=\frac{1}{(2 \pi)^{3 / 2}} \sum_{\lambda} \int \frac{d^{3} k}{2 k_{0}}\left[a_{\lambda}(k) \epsilon_{\lambda}^{\mu}(k) e^{-i k x}+a_{\lambda}^{\dagger}(k) \epsilon_{\lambda}^{\mu}(k)^{*} e^{i k x}\right]: \quad \text { operators } \tag{14}
\end{array}
$$

Polarization vectors ϵ_{λ}^{μ}, λ : helicity (polarization) index,

$$
\begin{array}{r}
\epsilon_{\lambda} \cdot k=0, \quad \epsilon_{\lambda}^{*} \cdot \epsilon_{\lambda^{\prime}}=-\delta_{\lambda \lambda^{\prime}}, \\
m>0: \quad \sum_{\lambda=1}^{3} \epsilon_{\lambda}^{\mu}(k)^{*} \epsilon_{\lambda}^{\nu}(k)=-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{m^{2}}: \quad 3 \text { helicity states } \\
m=0: \quad \sum_{\lambda=1}^{2} \epsilon_{\lambda}^{\mu}(k)^{*} \epsilon_{\lambda}^{\nu}(k)=-g^{\mu \nu}+\frac{k^{\mu} n^{\nu}+k^{\nu} n^{\mu}}{k \cdot n}: \quad 2 \text { helicity states }, \tag{17}
\end{array}
$$

where we have chosen the gauge $n \cdot \epsilon=0, n$ an arbitrary reference vector with $n^{2}=0$ and $k \cdot n \neq 0$.

- External $A^{\mu}: 2$ (for $m=0$) and 3 (for $m>0$) physical states.
- Internal A^{μ} : Feynman propagator, unphysical states can occur (i.e. $\lambda>3$).

Dimension: $\left[A^{\mu}\right]=E$.

Differential cross section

$$
\begin{equation*}
d \sigma=\operatorname{Flux}\left(\prod_{i=1}^{n} \frac{d^{D-1} \vec{p}_{i}}{2 E_{i}(2 \pi)^{D-1}}\right)(2 \pi)^{D} \delta^{D}\left(p_{\text {in }}-\sum_{i=1}^{n} p_{i}\right)|M|^{2}, \tag{18}
\end{equation*}
$$

$D=4$ by default, but we need the general formula for dimensional regularization. M is the amplitude, which can be calculated using Feynman rules.

1) For scattering:

$$
\begin{array}{r}
A+B \rightarrow f_{1}+f_{2}+\cdots f_{n}, \quad p_{\text {in }}=p_{A}+p_{B} \\
\text { Flux }=\frac{1}{2 E_{A} 2 E_{B}\left|v_{A}-v_{B}\right|}, \tag{20}
\end{array}
$$

$$
\begin{equation*}
\left|v_{A}-v_{B}\right|=\left|\frac{p_{A}^{z}}{E_{A}}-\frac{p_{B}^{z}}{E_{B}}\right|: \quad \text { the relative velocity of the incoming particles. } \tag{21}
\end{equation*}
$$

2) For decay:

$$
\begin{array}{r}
A \rightarrow f_{1}+f_{2}+\cdots f_{n}, \quad p_{\text {in }}=p_{A}, \\
\text { Flux }=\frac{1}{2 m_{A}} . \tag{23}
\end{array}
$$

Problem: Assume $M=1, D=4$, calculate the decay width Γ for $A \rightarrow f_{1}+f_{2}$ and the total cross section σ for $A+B \rightarrow f_{1}+f_{2}, m_{A}=m_{B}$.

Integrated cross section, $D=4$:

$$
\begin{equation*}
\sigma=\text { Flux } \int \prod_{i=1}^{n} \frac{d^{3} \vec{p}_{i}}{2 E_{i}(2 \pi)^{3}}(2 \pi)^{4} \delta^{4}\left(p_{\text {in }}-\sum_{i=1}^{n} p_{i}\right)|M|^{2} F_{\mathrm{cut}}\left(p_{i}\right) \tag{24}
\end{equation*}
$$

$F_{\text {cut }}\left(p_{i}\right)$: constraints on the final-state momenta (event selection).
Number of events $=\sigma \times$ Luminosity

- Polar angle: $[0, \pi]$, azimuthal angle: $[-\pi, \pi]$.
- Transverse momentum: $p_{T, i}=\sqrt{p_{x, i}^{2}+p_{y, i}^{2}}$.
- Rapidity: $y_{i}=\frac{1}{2} \log \frac{E_{i}+p_{z, i}}{E_{i}-p_{z, i}}$.

Kinematics

- Pseudo rapidity: $\eta_{i}=\frac{1}{2} \log \frac{\left|\vec{p}_{i}\right|+p_{z, i}}{\left|\vec{p}_{i}\right|-p_{z, i}}$.

Problem: in 1 minute prove that $\eta_{i}=-\log \tan \frac{\theta_{i}}{2}$. Range: $-\infty<\eta_{i}<\infty$.

- Invariant mass: $m_{i j}^{2}=\left(p_{i}+p_{j}\right)^{2}, \quad m_{i j k}^{2}=\left(p_{i}+p_{j}+p_{k}\right)^{2}, \ldots$
- Pseudo-rapidity azimuthal-angle separation: $R_{i j}=\sqrt{\left(\phi_{i}-\phi_{j}\right)^{2}+\left(\eta_{i}-\eta_{j}\right)^{2}}$.
- A typical cut: $p_{T, i}>20 \mathrm{GeV},\left|\eta_{i}\right|<2.5, R_{i j}>0.4$.

Distributions (histograms)

Transverse momentum distribution of the leading $\left(\max p_{T}\right.$) lepton from the leading lepton pair ($\max m_{\| l}$).
Distributions tell us how events are distributed over the phase space. They are very useful to distinguish signal from background.
Example: signal $H \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$, background $Z \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$. Plot the $m_{e^{+} e^{-} \mu^{+} \mu^{-}}$distribution.
Problem: Assume $M=1, D=4$, calculate the angular distribution $d \sigma / d \cos \theta$ for a $A+B \rightarrow f_{1}+f_{2}$ process in the center of mass system, $m_{A}=m_{B}$. Try to calculate $d \sigma / d p_{T, 1}$?

Distributions: how to do it?

$$
\begin{array}{r}
\text { process : } \quad A+B \rightarrow f_{1}+f_{2}+f_{3}+f_{4}+f_{5}, \quad n=5, \\
\sigma=\text { Flux } \int \prod_{i=1}^{n} \frac{d^{3} \vec{p}_{i}}{2 E_{i}(2 \pi)^{3}}(2 \pi)^{4} \delta^{4}\left(p_{\text {in }}-\sum_{i=1}^{n} p_{i}\right)|M|^{2} F_{\text {cut }}\left(p_{i}\right) . \tag{26}
\end{array}
$$

- We cannot do it analytically. We have to do it numerically.
- Key word: Monte Carlo method (the best option we have by now).

$$
\begin{equation*}
\sigma=\int_{0}^{1} \prod_{i=1}^{d} d x_{i} f\left(x_{i}\right) \approx \frac{1}{N} \sum_{j=1}^{N} f\left(\vec{x}_{j}\right) \tag{27}
\end{equation*}
$$

- The calculation error: $\sim 1 / \sqrt{N}$.
- Advantage: very easy to get any distribution.
- Popular program: VEGAS.

References

(1) A very useful reference in German, but you can read the equations:

Übungen zu Strahlungskorrekturen in Eichtheorien (problems of radiative corrections in gauge theories): Matthias Steinhauser, Maria Laach, 2003. You can get a PDF file from google with key word: Steinhauser Maria Laach.
(2) A nice summary of quantum field theory and the SM: Hollik, arxiv:1012.3883.
(3) The Standard Model, Feynman rules, Renormalization: Denner, arxiv: 0709.1075.
(4) Helicity amplitude method: HELAS manual, KEK report 91-11.
(5) Dimensional regularization and schemes for γ_{5} : 't Hooft and Veltman, Nucl. Phys. B44 (1972) 189, and Chanowitz, Furman and Hinchliffe, Nucl. Phys. B159 (1979) 225.
(6) One loop integrals: for basic mathematical rules, see the Appendix D of Le Duc Ninh, arxiv: 0810.4078.

