Higgs boson discovery

Why the H $\rightarrow \gamma \gamma$ channel?

• Higgs boson production and decay at higher orders :

Top, and possibly other heavy quarks contribute to the production

W and top are the main contributions to the decay loop

Why the H $\rightarrow \gamma \gamma$ channel?

- Signal and backgrounds, assuming mH~125 GeV
 - Main decay mode
 - BR(H → bb) ~ 56%
 - Main background : g g \rightarrow b b, $\sim \alpha_s^2$
 - Mass resolution ~15 GeV
 - Photon pair decay mode
 - BR(H $\rightarrow \gamma\gamma$) ~ 0.23%
 - Main background : q q $\rightarrow \gamma \gamma$, $\sim \alpha_{OED}^{2}$
 - Mass resolution ~1.5 GeV
- Signal : γγ / bb ~1/200
- Backgtround : $\gamma\gamma$ / bb ~1/100000

Analysis result : full LHC data set

Interpretation

At ~125 GeV, in the Standard Model :

- $\sigma(gg \rightarrow H) = 19 \text{ pb}$ - BR(H $\rightarrow \gamma\gamma$) = 0.23% Analysis summary:

- 550 +- 120 signal events
- εA ~ 0.4
- L = 25 +- 1 fb⁻¹

Interpretation

- How does the measured Higgs boson signal compare with the Standard Model? I.e. calculate $\sigma_{_{\rm MEASURED}}$ / $\sigma_{_{\rm SM}}$
- Look at the following plots, taken from http://inspirehep.net/record/963361
 Can we exclude a 4th generation?

Last words

- You have seen the elaboration of the Electroweak Theory, and its experimental validation, step by step!
- The discussion was kept as simple as possible, the idea being to introduce you some very-day concepts in High Energy physics:
 - relating theory and experiment
 - exploiting data statistically
 - Final states in lepton and hadron colliders
 - ...
- I hope you enjoyed, and I hope to see those of you who will choose this field sooner or later in our big laboratories.
- If you have questions you can always mail me: maarten.boonekamp@cern.ch