LEP1 : INVESTIGATING THE Z RESONANCE

Resonance production cross sections

• A general formula for vector resonance production:

$$\begin{split} \sigma(f_1 f_2 \rightarrow f_3 f_4) &= \frac{12\pi}{s} \frac{\Gamma_{f_1 f_2} \Gamma_{f_3 f_4}}{(s - M_0^2)^2 + s^2 \Gamma_{tot}^2 / M_0^2} \\ \end{split}$$
 where:
$$\Gamma_{f_i f_j} &= \Gamma_{tot} \times BR(f_i f_j) \end{split}$$

Tree level Standard Model formulae for the widths into given fermion (of given color!):

$$\Gamma_{W \to f_i f_j} = \frac{G_F}{\sqrt{2}} \frac{M_W^3}{6\pi} \qquad \qquad \Gamma_{Z \to f\bar{f}} = \frac{G_F}{\sqrt{2}} \frac{M_Z^3}{6\pi} (v_f^2 + a_f^2)$$

Reminder : couplings v_{f} , a_{f} at the tree level

	Family		T	T_3	Q	
ν_{eR}	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}$ $\nu_{\mu R}$	$\nu_{\tau R}$	1/2 0 0	$^{+1/2}_{-1/2}_{0}_{0}$	$0 \\ -1 \\ 0 \\ -1$	$\rho_0 = \frac{m_{\rm W}^2}{m_{\rm Z}^2 \cos^2 \theta_{\rm W}^{\rm tree}}.$
e_R $\begin{pmatrix} u \\ d \end{pmatrix}_L$ u_R d_R	$ \begin{array}{c} \mu_{R} \\ \begin{pmatrix} c \\ s \\ c_{R} \\ c_{R} \\ s_{R} \end{array} $				-1 +2/3 -1/3 +2/3 -1/3	$\begin{array}{lll} g_{\mathrm{V}}^{\mathrm{tree}} &\equiv& g_{\mathrm{L}}^{\mathrm{tree}} + g_{\mathrm{R}}^{\mathrm{tree}} &=& \sqrt{\rho_0} \left(T_3^{\mathrm{f}} - 2 Q_{\mathrm{f}} \sin^2 \theta_{\mathrm{W}}^{\mathrm{tree}} \right) \\ g_{\mathrm{A}}^{\mathrm{tree}} &\equiv& g_{\mathrm{L}}^{\mathrm{tree}} - g_{\mathrm{R}}^{\mathrm{tree}} &=& \sqrt{\rho_0} T_3^{\mathrm{f}} . \end{array}$

Numerical values, assuming $\sin^2 \theta_w = 0.23$

	ν	μ	u	d
gv	1/2	-0.04	0.19	-0.34
ga	1/2	-1/2	1/2	-1/2

Tree level cross-sections

- Compute all widths and keep them in mind! MeV's are the natural unit. What is the peak cross-section for:
 - $e^+e^- \rightarrow Z \rightarrow \mu^+\mu^-$
 - $e^+e^- \rightarrow Z \rightarrow \nu_{\mu}\bar{\nu_{\mu}}$
 - $e^+e^- \rightarrow Z \rightarrow d\bar{d}$
 - $e^+e^- \rightarrow Z \rightarrow u \overline{u}$
 - What are the open modes? What is the total cross-section? What is the total width? What are the branching fractions?

Tree level cross-sections

• Widths (I = each lepton):

Γ(Z → II)	$\Gamma(Z \rightarrow \nu_{\mu}\nu_{\mu})$	Γ(Z → dd)	Γ(Z → uu)	Γtot
83 MeV	165 MeV	361 MeV	282 MeV	2.390 GeV

• Branching fractions

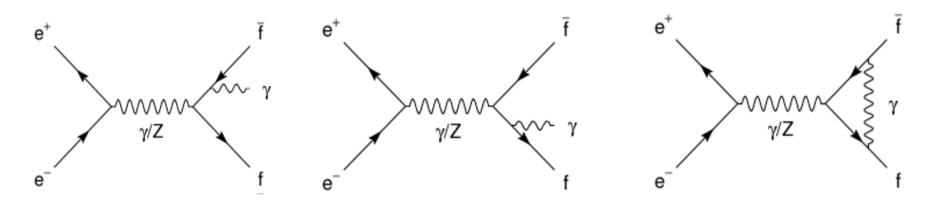
BR(Z → II)	BR(Z → vv)	BR(Z \rightarrow hadrons)
3.5%	20.6%	68.9%

Peak cross-sections

σ(Z → II)	$\sigma(Z \rightarrow hadrons)$
2.1 nb	42 nb

QED and QCD radiative corrections

• QED corrections:



after computation, these corrections amount to a factor $(1 + \alpha/\pi) \sim 1.0025$, to be applied to the tree-level width.

• QCD corrections : the same graphs, just replacing photon by gluon. Only relevant for quarks The correction factor is $(1 + \alpha / \pi) \sim 1.04$

These factors should be applied to the partial widths (depending on flavour!), and the branching fractions recomputed

The EW radiative corrections in two slides

• The weak mixing angle appearing in the tree-level formulas:

$$\sin^2 \theta_W = 1 - \frac{M_W^2}{M_Z^2}$$
 $v_f = \sqrt{1} (T_{3f} - 2Q_f \sin^2 \theta_W)$

can not be the same quantity when including radiative corrections, because the corrections to both relations are different, for example:

• One way to parametrize the corrections is to define $\sin^2 \theta_w = 1 - \frac{M_w^2}{M_z^2}$ as true to all orders, and to introduce an **effective weak mixing angle**

controlling the couplings.

The EW radiative corrections in two slides

• We define the renormalised couplings:

$$v_f = \sqrt{1 + \Delta \rho} \quad (T_{3f} - 2Q_f \sin^2 \theta_W^{eff})$$
$$a_f = \sqrt{1 + \Delta \rho} \quad T_{3f}$$

with $\sin^2 \theta_W^{eff} = \mathbf{\kappa} \sin^2 \theta_W$ $\mathbf{\kappa} = 1 + \Delta \mathbf{\kappa}$

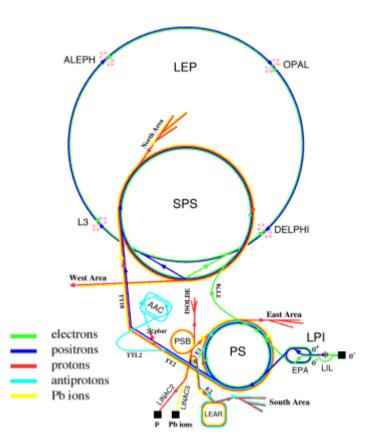
- The tree-level expressions of the widths are still valid in terms of these modified couplings.
- And after calculations are done in this scheme we find:

$$\Delta \rho = \frac{3G_F m_t^2}{8\sqrt{2}\pi^2} - f(\ln(M_H)) \qquad \Delta \kappa = \frac{3G_F m_t^2}{8\sqrt{2}\pi^2} \frac{\cos^2 \theta_W}{\sin^2 \theta_W} - f'(\ln(M_H))$$

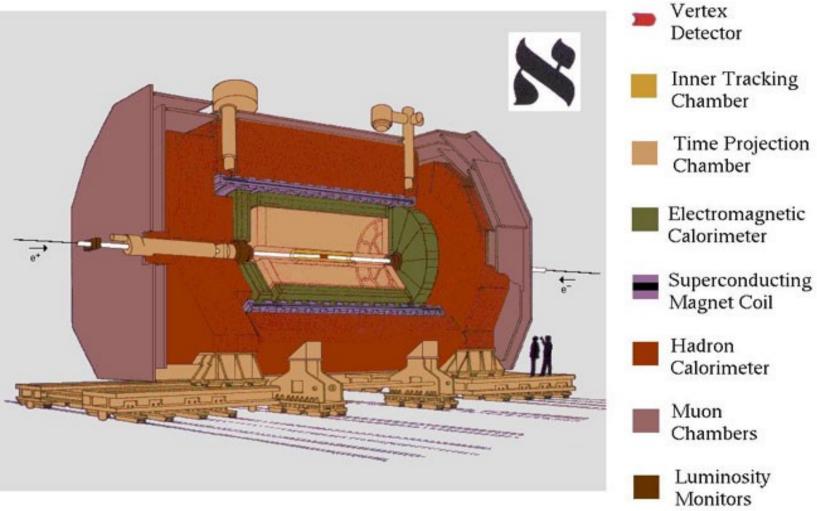
• So the observables, e.g $\Gamma_{Z \to f \bar{f}} \sim (v_f^2 + a_f^2)$ are sensitive to the top quark and Higgs boson masses.

The LEP accelerator and the experiments

- LEP1 : run around root(s) ~ Mz.
- Four experiments : ALEPH, DELPHI, L3, OPAL. Each experiment could accumulate about L = 200 pb-1



The experiments : ALEPH



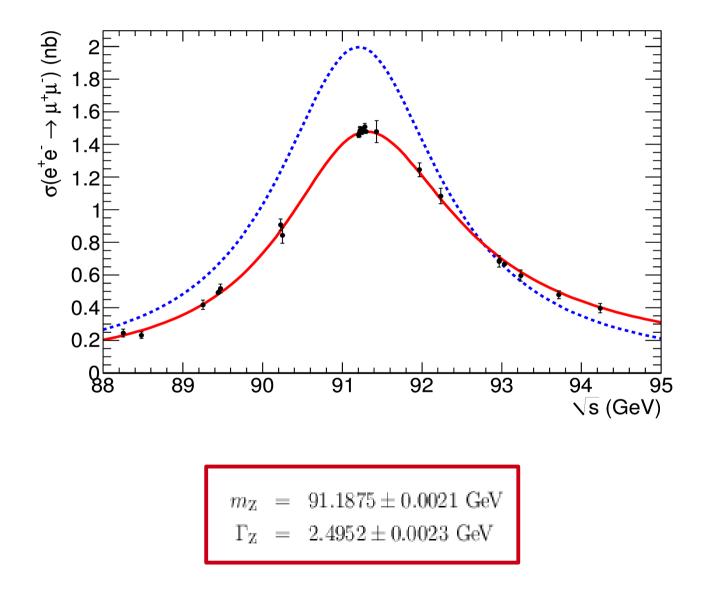
The ALEPH Detector

Measurement of the lineshape

- Why?
 - Contributes to the determination of the width, and thus of the couplings as discussed
 - The peak of the cross-section will allow to extract the Z boson mass.
- Measurement method:
 - The accelerator is operated at various energy points, and the cross-section is measurement at each point.
 - The theoretical model is then fitted to the points, i.e the relevant parameters of the theory (in this case, M_z , Γ_z) are varied until a good description of the data is found
 - The corresponding parameters are quoted as the measured values
- These data were taken between 1989 and 1995, with successive refinements of the scan points as the mass became more precise:

Year	Centre-of-mass	Integrated
	energy range	luminosity
	[GeV]	$[pb^{-1}]$
1989	88.2 - 94.2	1.7
1990	88.2 - 94.2	8.6
1991	88.5 - 93.7	18.9
1992	91.3	28.6
1993	89.4, 91.2, 93.0	40.0
1994	91.2	64.5
1995	89.4,91.3,93.0	39.8

Determination of the Z boson mass and width



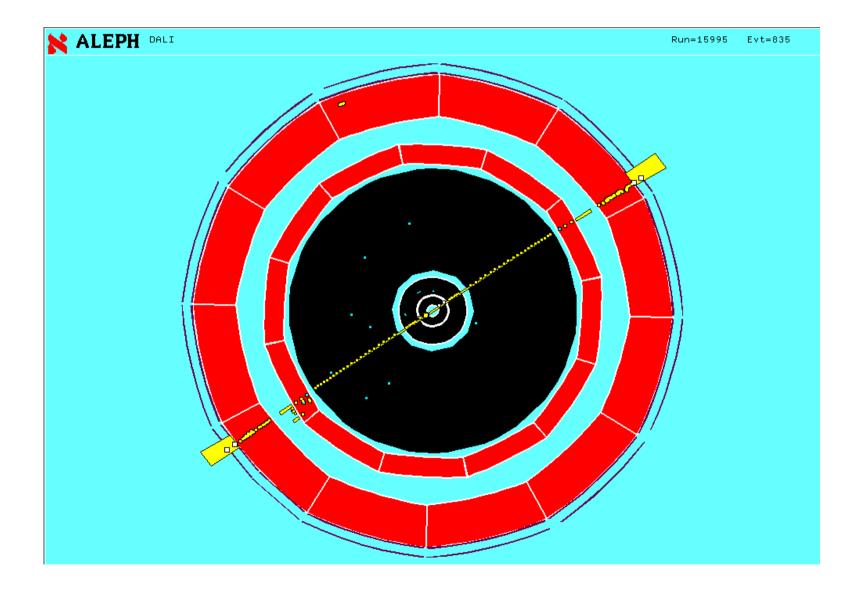
Measurement of the Branching fractions

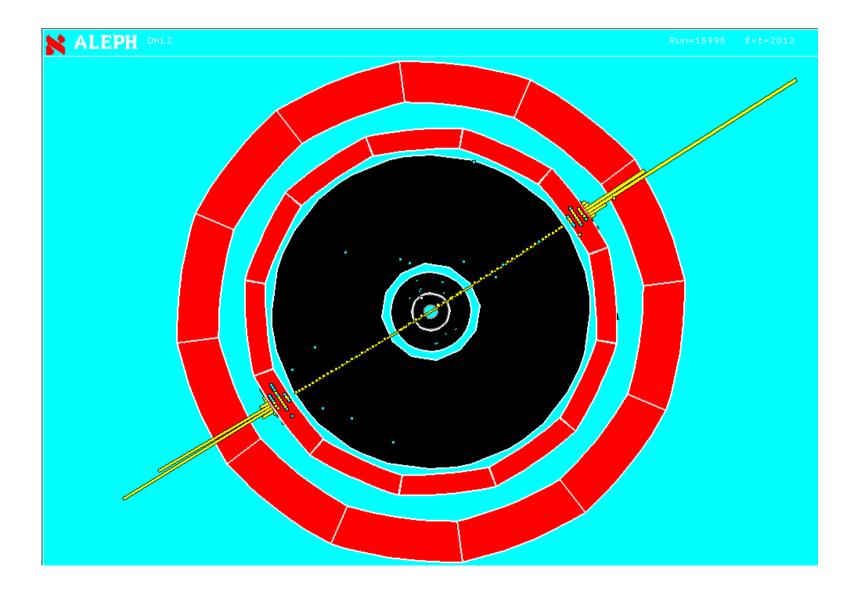
- Measuring brahching fractions means to measure the relative frequency for each final state, compared to the overall Z sample. We can identify:
 - Electrons
 - Muons
 - Tau leptons
 - Jets, and specifically b-quark jets

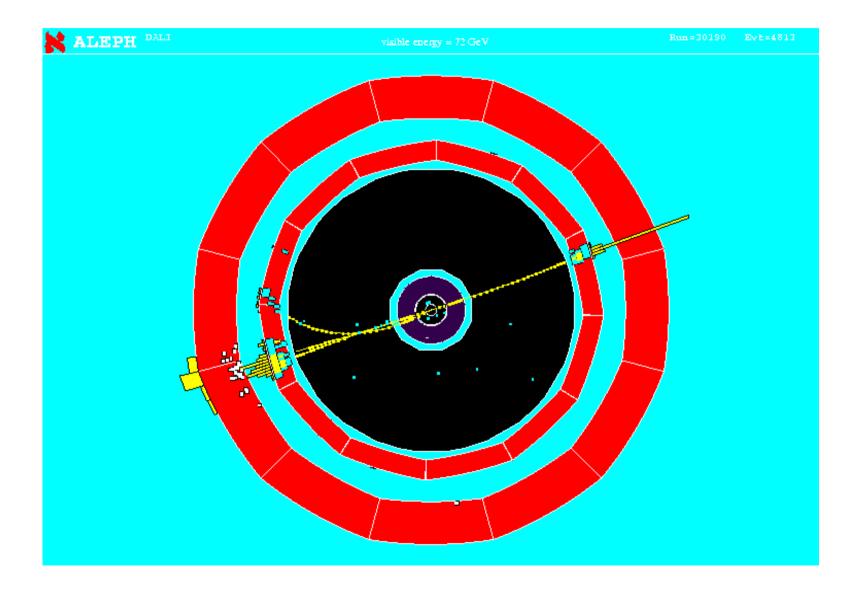
For each flavour, we compute Nf/Ntot.

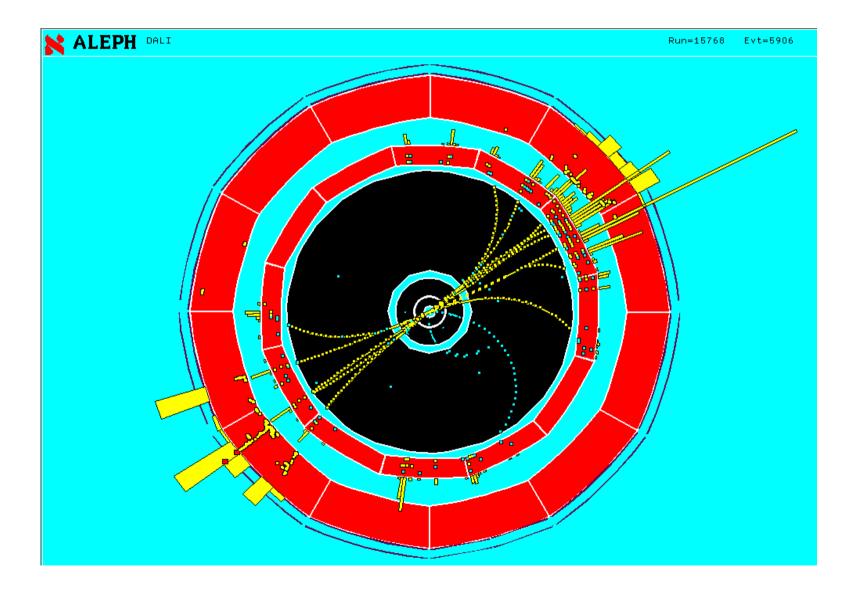
• Injecting the total width then gives the partial widths, which are related to our physical parameters:

$$\Gamma_{Z \to f\bar{f}} = BR(f\bar{f}) \times \Gamma_{tot}$$









Partial width results, revisited

• Following the branching fractions, the partial widths can be computed as

$$Br(i) = \frac{\Gamma_i}{\Gamma_{tot}}$$

compared to our radiatively corrected predictions:

Γ(Z → II)	Гhad	Γinv
83.25 MeV	1713 MeV	495

Interpretation!

• We have now included all non-ambiguous corrections, it is time to look at the electroweak corrections! Remember,

$$\mathbf{v}_{f} = \sqrt{1 + \Delta \rho} \left(T_{3f} - 2Q_{f} \Delta \kappa \sin^{2} \theta_{W} \right) \qquad a_{f} = \sqrt{1 + \Delta \rho} T_{3f}$$
$$\Delta \rho = \frac{3G_{F}m_{t}^{2}}{8\sqrt{2}\pi^{2}} - f\left(\ln\left(M_{H}\right)\right) \qquad \Delta \kappa = \frac{3G_{F}m_{t}^{2}}{8\sqrt{2}\pi^{2}} \frac{\cos^{2} \theta_{W}}{\sin^{2} \theta_{W}} - f'\left(\ln\left(M_{H}\right)\right)$$

• Can you estimate the top mass? What is the simplest channel? Remember:

Interpretation!

• Take the neutrino width (zero charge!). We can write the ratio of the radiatively corrected width to the tree-level width:

$$\frac{\Gamma_{\nu\nu}^{RC}}{\Gamma_{\nu\nu}^{0}} = 1 + \Delta \rho$$

• The RC width should be our best description of the reality, so we put

 $\Gamma^{RC}_{\nu\nu} = \Gamma^{obs}_{\nu\nu}$

• We thus find, for the top mass (let us neglect the small $M_{_{\!H}}$ contribution):

$$m_t^2 = \frac{8\sqrt{2}\pi^2}{3G_F} \left(\frac{\Gamma_{\nu\nu}^{obs}}{\Gamma_{\nu\nu}^0} - 1\right) \quad \text{or} \quad m_t = 161 \pm 20 \, GeV$$

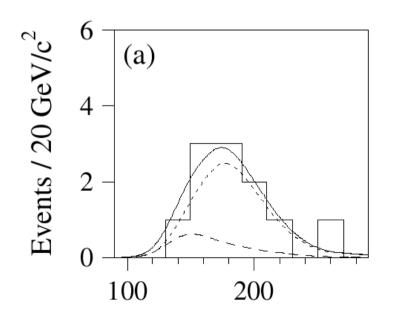
Z precision measurements : overall strategy

- The measurement campaign is much more involved than what I showed here. In particular:
 - It was desired to measure the v and a couplings of all identifiable final states individually, and check their consistence. For example, we want to verify that the analysis of the $\mu\mu$ and bb channels lead to the same top quark mass.
 - It was desired to verify assumptions like lepton universality, number of light neutrino families, etc.
 - Finally, all data need to be combined in order to predict the top quark mass as precisely as possible! The complete result is, including all channels::

$$m_t = 173 \pm 12 \, GeV$$

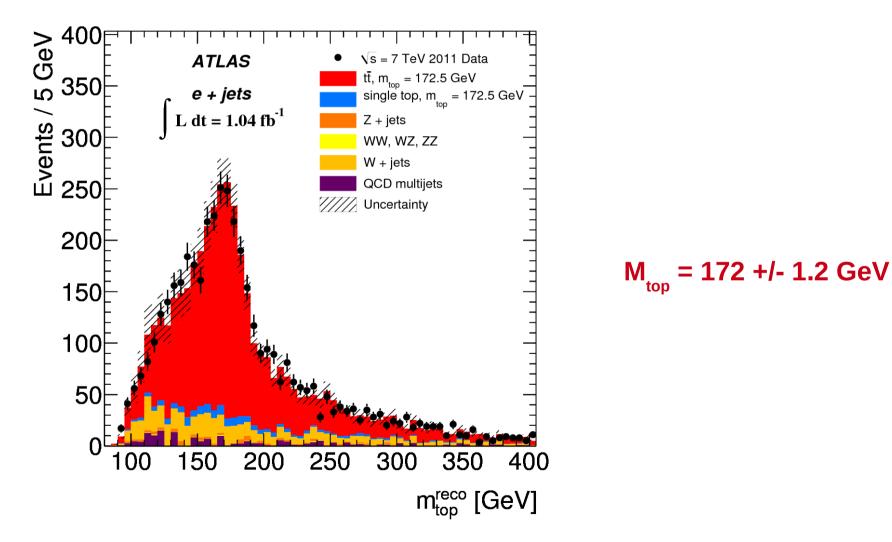
The top quark discovery

- ... happened in 1994, at the Tevatron:
 - The production process is mainly $q \bar{q} \rightarrow t \bar{t}$
 - The decay mode is mainly: $t \rightarrow W b$
 - And all W decay modes are exploited.



Confirmation of the electroweak theory at the quantum level!

The top quark today



References

• Discovery and other interesting experimental papers

discovery of parity violation Phys.Rev.105:1413-1414,1957 UA1, Phys.Lett.B126:398-410,1983 UA1, Phys.Lett.B122:103-116,1983 UA2, Phys.Lett.B129:130-140,1983 UA2, Phys.Lett.B122:476-485,1983 W and Z discoveries Phys.Lett.B241:150-164,1990. W mass measurement at UA2 Summary of LEP1 precision measurements Phys.Rept.427:257,2006 Phys.Rev.Lett.74:2632-2637,1995 Phys.Rev.Lett.74:2626-2631,1995 Top quark discovery

Eur.Phys.J.C55:1-38,2008 Eur.Phys.J.C47:309-335,2006

W mass measurements at LEP

References

• Information on particle data: http://pdg.lbl.gov

(ask your institutes to order booklets!)

- Lectures on statistical data analysis: http://www.hep.ph.rhul.ac.uk/~cowan (a colleague who gave many lectures on these issues)
- The VERY BEST resource on electroweak corrections: http://inspirehep.net/record/288139