THE STANDARD MODEL

Additional ingredients

- We want to build a renormalizable gauge theory describing:
 - QED at low energy
 - weak interactions, β decays.
- This is achieved by postulating:

a SU(2), local symmetry

•

•

• a U(1) "hypercharge" local symmetry

- → massless vector B
- → massless W⁺,W⁰,W⁻
- a complex scalar SU(2) doublet and ϕ^4 potential \rightarrow the Higgs field
- In the ground state, the v.e.v couples to the bosons → massive H and W's
- **B and W0** have same spin/parity and **mix**

 $\rightarrow \gamma$, Z; m γ = 0; m₂ \neq m_w

Additional ingredients

- We want to build a renormalizable gauge theory describing:
 - QED at low energy
 - weak interactions, β decays.
- Boundary conditions
 - γZ mixing parameter : $\sin^2 \theta_W$
 - $U(1)_{\gamma}$ coupling \mathbf{g}_{1} , $SU(2)_{\gamma}$ coupling \mathbf{g}_{2} must satisfy

 $g_1 \sin \theta_W = g_2 \cos \theta_W = e$

• The Fermi interaction is now interpreted as W or Z exchange at $Q \sim 0$ and

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8\sin^2\theta_W M_W^2} = \frac{e^2}{8\sin^2\theta_W \cos^2\theta_W M_Z^2}$$

Standard Model relations

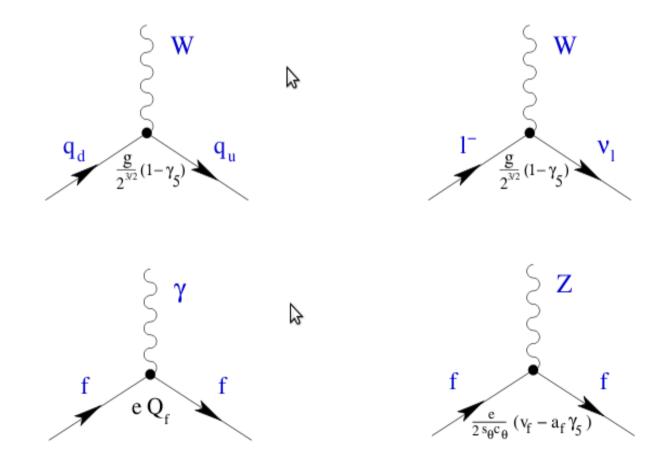
- Predictions at the tree level (sufficient for now)
- The Mw / Mz relation is dictated by the weak mixing angle and the Higgs sector:

$$\rho_0 = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W^{\text{tree}}}.$$

 ρ_{n} = 1 in models with only Higgs singlets and doublets (such as the SM).

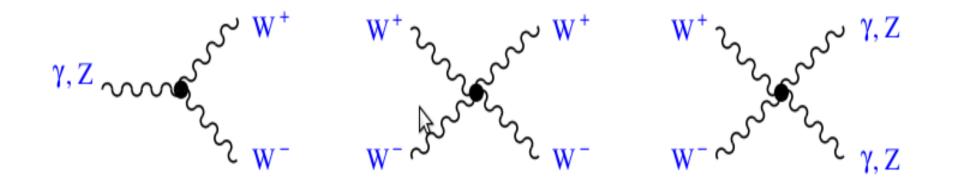
• The left and right (or vector and axial) coupling strengths of the fermions are given by:

$$g_{\rm L}^{\rm tree} = \sqrt{\rho_0} \left(T_3^{\rm f} - Q_{\rm f} \sin^2 \theta_{\rm W}^{\rm tree} \right) \qquad \qquad g_{\rm V}^{\rm tree} \equiv g_{\rm L}^{\rm tree} + g_{\rm R}^{\rm tree} = \sqrt{\rho_0} \left(T_3^{\rm f} - 2Q_{\rm f} \sin^2 \theta_{\rm W}^{\rm tree} \right) \\ g_{\rm R}^{\rm tree} = -\sqrt{\rho_0} Q_{\rm f} \sin^2 \theta_{\rm W}^{\rm tree}, \qquad \qquad \qquad g_{\rm A}^{\rm tree} \equiv g_{\rm L}^{\rm tree} - g_{\rm R}^{\rm tree} = \sqrt{\rho_0} T_3^{\rm f}.$$

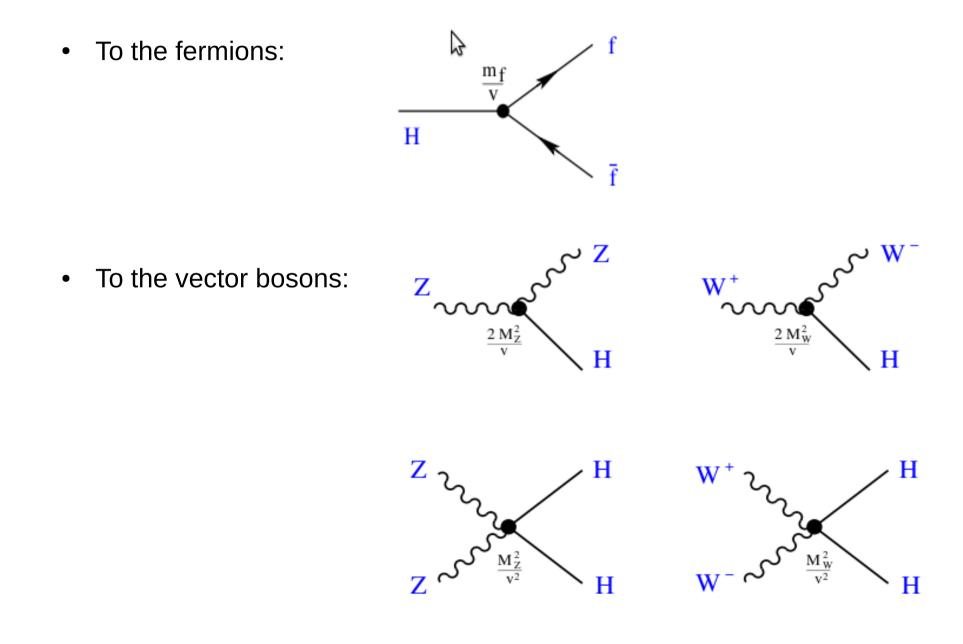

Standard Model relations

• Fermions and quantum number assignments:

	Family		T	T_3	Q
$\left(\begin{array}{c} \nu_{\rm e} \\ {\rm e} \end{array}\right)_L$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array}\right)_{L}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{L}$	1/2	$^{+1/2}_{-1/2}$	0 -1
$\nu_{\mathrm{e}R}$	$\nu_{\mu R}$	$\nu_{\tau R}$	0	0	0
e_R	μ_R	τ_R	0	0	-1
$\begin{pmatrix} u \\ d \end{pmatrix}_L$	$\begin{pmatrix} c \\ s \end{pmatrix}_L$	$\left(\begin{array}{c} \mathbf{t} \\ \mathbf{b} \end{array}\right)_L$	1/2	$^{+1/2}_{-1/2}$	$^{+2/3}_{-1/3}$
u_R	c_R	t_R	0	0	+2/3
d_R	\mathbf{s}_R	\mathbf{b}_R	0	0	-1/3


• Exercise : calculate g_{V} , g_{A} for all fermions

Vertices and couplings : fermion-boson


Vertices and couplings : boson-boson

• "TGCs" and "QGCs"

- The couplings are more complicated here (derivative, momentum dependent)
- We will not care about their magnitude, although we will discuss their contribution to the SM validation

Vertices and couplings : Higgs sector

Summary of tree-level predictions (and post-dictions!)

- Known, and embedded in the theory
 - QED. The photon is re-interpreted as a mixture of W0 and B
 - Charged currents (known since β and μ decays, also observed in collision).
 - Maximal parity violation in charged current sector. Technically possible via Dirac spinors and the (1- γ 5) operator

Summary of tree-level predictions (and post-dictions!)

- Genuine new predictions
 - Neutral currents (with neutrinos!!)
 - Two new heavy resonances : one neutral, one charged (+/-)
 - The branching fractions of these resonances
 - Couplings among gauge bosons (TGC, QGC)
 - The Higgs boson, how to produce and detect it

HIGHLY NON TRIVIAL!

- Agreed, the SM construction is "ad-hoc". But it is still very predictive!
- Having derived the interaction from symmetry has important implications! Assuming the W bosons are the generators of a new symmetry group has had implications:
 - The smallest group having a pair of charged generators is SU(2)
 - SU(2) has THREE generators \rightarrow Existence of a new heavy neutral boson
 - SU(2) is non-abelian \rightarrow Couplings among gauge bosons
 - The weak mixing angle determines the W and Z mass ratio AND the fermion couplings to the Z
 - Existence of the Higgs boson.

Exercises

- Calculate the expected values of g_{v} , g_{A} for all fermions
- Calculate the Higgs boson branching fractions, assuming only light decay modes are open. Use:
 - b quark mass ~ 4.5 GeV
 - τ lepton mass = 1.8 GeV
 - c quark mass = 1.5 GeV
 - s quark mass = 200 MeV
 - photon, gluon mass = 0