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Abstract

The purpose of this note, based on the lectures delivered at the 20th Vietnam School
of Physics, Quy Nhon, Vietnam, 12 - 14 Aug, 2014, is to provide comprehensive and
explicit accounts on cosmic inflation and the cosmological perturbations produced during
inflation in the early universe, and the new physics we can extract from observations.
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We adopt the sign convention of the textbook by Misner, Thorne & Wheeler (1973), i.e.

ηµν = (−+ ++) , (1)

Rµ
αβγ = Γµαγ,β − Γµαβ,γ + ΓµσβΓσγα − ΓµσγΓ

σ
βα , (2)

Rµν = Rα
µαν , (3)

Gµν =
Tµν
m2

Pl

, (4)

where mPl ≡ (8πG)−1/2 ∼ 1018 GeV is the Planck mass. Also, we set c = ~ = kB = 1 so that
energy, mass and temperature all have the same dimension, usually described in terms of GeV.

1 Inflation

In this series of lectures, I would like to deliver explicit accounts on the cosmic inflation and
the cosmological perturbations at linear order produced during inflation. They give rise to
a number of observable quantities, from which we can extract the clues on the elusive new
physics relevant for the early universe where the energy scale is far larger than what terrestrial
accelerator experiments can ever reach. In the first part, therefore, I will first concentrate on
inflation: what it is, why it is attractive, how it occurs, and so on.

1.1 Background equations

We begin with the so-called Friedmann-Robertson-Walker metric of a flat universe

ds2 = −dt2 + a2(t)δijdx
idxj . (5)

This metric describes a flat, expanding universe parametrized by the “scale factor” a(t). The
spatial distance with the scale factor being singled out is described by δijdx

idxj, which is called
“comoving” distance. On the contrary, the “physical” distance is multiplied by the scale factor.

We first want the key equations which we will use throughout the lectures. These are given
by the Einstein equation (4). At the moment it is sufficient to consider background equations.

1.1.1 Einstein tensor

We first consider the LHS of the Einstein equation, namely, the Einstein tensor

Gµν = Rµν −
1

2
gµνR . (6)

We can immediately write each component of the metric tensor gµν and its inverse gµν as

g00 = −1 , gij = a2δij ,

g00 = −1 , gij = a−2δij .
(7)
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We want to calculate the Christoffel symbol, the Ricci tensor and the Ricci scalar, each given
by

Γρµν =
1

2
gρσ (gµσ,ν + gσν,µ − gµν,σ) , (8)

Rµν = Γαµν,α − Γαµα,ν + ΓασαΓσµν − ΓασνΓ
σ
µα , (9)

R = gµνRµν , (10)

explicitly. The non-zero components of the Christoffel symbols are, after some calculations,

Γ0
ij = a2Hδij , (11)

Γi0j = Γij0 = Hδij , (12)

with H = ȧ/a being the Hubble parameter, otherwise zero. Then, easily we have

R00 = −3
(
H2 + Ḣ

)
, (13)

Rij = a2
(

3H2 + Ḣ
)
δij , (14)

R = 6
(
Ḣ + 2H2

)
. (15)

Thus, the non-zero components of the Einstein tensor (6), or more frequently Gµ
ν = gµρGρν ,

are

G00 = 3H2 , (16)

Gij = −a2
(

2Ḣ + 3H2
)
δij , (17)

G0
0 = −3H2 , (18)

Gi
j = −

(
2Ḣ + 3H2

)
δij . (19)

1.1.2 Energy-momentum tensor

As can be read from the Einstein equation (4), the Einstein tensor which describes the struc-
ture of the space-time should be matched with the energy-momentum tensor which describes
the matter residing in the space-time. On the assumption of the homogeneous and isotropic
background, we may regard at the background level that the energy-momentum tensor is that
of perfect fluid1, i.e.

T µν = diag(−ρ, p, p, p) . (20)

1In terms of the general (hydrodynamical) matter fluid, the energy-momentum tensor is written as

Tµν = (ρ+ p)uµuν + pgµν ,

where uµ is the fluid 4-velocity which satisfies

uµuµ = gµνu
µuν = −1 ,

so that uµ is a time-like, unit 4-vector. Thus we can set uµ = (1, 0, 0, 0). Using these we can trivially find (20).
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1.1.3 Einstein equation

Now we can write each component of the Einstein equation (4):

00 component: H2 =
ρ

3m2
Pl

, (21)

ij component: − 3H2 − 2Ḣ =
p

m2
Pl

. (22)

(21) is called the Friedmann equation, which relates the Hubble parameter to the energy density.
Using (21) for (22) to replace H2 with ρ, we can find the time variation of H as

Ḣ = −ρ+ p

2m2
Pl

. (23)

Or, explicitly in terms of the time derivatives of the scale factor,

ä

a
= −ρ+ 3p

6m2
Pl

. (24)

We will refer to this equation soon. Note that by taking a time derivative of (21) and using
(22) to eliminate Ḣ, we can derive energy conservation equation

ρ̇+ 3H(ρ+ p) = 0 . (25)

This is what we can find from the conservation of energy-momentum tensor: from

T µν;µ = T µν,µ − ΓρµνT
µ
ρ + ΓµρµT

ρ
ν = 0 , (26)

we can trivially check that ν = 0 component gives (25). ν = i component vanishes identically.

1.2 Cosmic microwave background

1.2.1 Generation of the CMB

With the necessary background equations, now let us see what happened in the past when the
temperature was high enough. First, we note that from the conservation equation (25) that
different species scale differently: ordinary particles (electron, proton, neutron...) have very
large rest energy compared to the kinetic energy, so they are called pressureless matter and
p = 0. Meanwhile, photons, or more generally relativistic particles, have p = ρ/3 and are called
radiation. Plugging these relations into (25), we find

ρmatter ∝ a−3 , (27)

ρradiation ∝ a−4 . (28)

We may understand that the energy density of pressureless matter is inversely proportional
to the volume ∼ a3 which contains the matter particles, and for radiation the energy density
is also proportional to the frequency, or the inverse of the wavelength, so we have one more
power of the scale factor. What this tells us is that, in the past, the universe was dominated
by radiation.
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More radiation in the past means, of course, the universe was hotter. It was too hot to
maintain neutral molecules, like hydrogen: because of the very hot temperature, electrons were
energetic enough to overcome the binding energy to protons, so that the universe was filled
by radiation (mostly photons), free electrons and nuclei (and dark matter). During this stage,
the mean free path of photons was very short because of the Thomson scattering between free
electrons and photons, maintaining thermal equilibrium. Thus, the universe was very “foggy”
for photons: exactly like we cannot see very far away when the weather is very foggy. This
stage continued until the universe was cooled to a critical temperature Tc ∼ 3000K. Below
this temperature, the binding energy between electrons and protons could overcome thermal
background and there remained no free electron. Thus, from this time on, the universe has
become transparent to photons and they could reach us after propagating for a long long time.
This situation is depicted in Figure 1. These very old photons, which have traveled all the time
since the moment of this “last scattering”, are the cosmic microwave background (CMB). It
was observed in 1965 by Penzias and Wilson by chance.

Figure 1: When T > Tc, electrons were free and constantly scattered off photons, so that the
universe was “foggy”. After the temperature drops below Tc, electrons are all captured by
protons and photons can propagate without scattering.

The observations tell us that the CMB is extremely homogeneous and isotropic, i.e. we
observe the same average temperature T0 ∼ 2.7K no matter which part or direction of the sky
we observe. Since photons were constantly scattering off free electrons and thus in thermal
equilibrium, the temperature spectrum of the CMB exhibits that of almost perfect blackbody
radiation. Moreover, the CMB could be generated only when the universe was hotter in the
past. Thus the discovery of the CMB was the knockdown blow for the steady state cosmology
which was competing against the hot big bang model in 60’s. Note that, after removing all
the contaminations and foreground effects, we have genuine temperature fluctuations of the
magnitude δT/T0 ∼ 105. We will return to this point later. In Figure 2 we show the background
and fluctuation temperature maps of the CMB.

1.2.2 Horizon problem

The CMB has brought, with the triumph of the hot big bang cosmology, big mysteries at the
same time. Let us consider 1 of them, namely, why the CMB is so much homogeneous. For
this, it is very convenient to introduce the conformal time τ , defined by

dτ ≡ dt

a
. (29)
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Figure 2: (Left) the cosmic microwave background is observed to be extremely homogeneous
and isotropic with the average temperature T0 ∼ 2.7K. (Right) however, it contains genuine
temperature fluctuations with respect to T0 of the magnitude δT/T0 ∼ 10−5. The temperature
fluctuation map is taken by the Planck satellite.

With τ , the line element (5) is written as

ds2 = a2(τ)
(
−dτ 2 + δijdx

idxj
)
, (30)

so that the metric is written as a product of the static Minkowski metric times the scale factor.
What does the conformal time mean? Let us consider the radial propagation of light, which is
the null geodesic ds2 = 0. Then, using the spherical coordinate we can write the radial distance
r a photon has traveled from some initial moment in terms of the conformal time as

r = τ , (31)

i.e. the conformal time measures the (comoving) distance a photon has traveled.
Then what’s the trouble with the CMB? We can straightforwardly find that from an initial

moment i till some later time 0, the conformal time (i.e. the distance photons have traveled)

τ =

∫ 0

i

dt

a
=

∫ 0

i

1

a

dt

da
da =

∫ 0

i

1

aH
d log a ∝ a1/2|0i , (32)

where for each equality we have used 1) the scale factor is a function of time solely, a = a(t),
2) the definition of the Hubble parameter, ȧ = aH, and 3) assumption of a matter dominated

universe, H ∼ ρ
1/2
matter ∼ a−3/2. Now, without loss of generality, we can take initial moment as

the initial singularity a(ti) = 0, where also τ = 0, so that simply τ ∝ a1/2. Further, using the
relation between the scale factor which is normalized to a0 = 1 at present and the redshift z

a =
1

1 + z
, (33)

we can find τ ∝ (1 + z)−1/2. Using z0 = 0 and zCMB ∼ 1100, we can easily find

τCMB

τ0

∼ 1√
11003

∼ 0.03 . (34)

Thus, at the moment when the CMB was generated, the past light cones stemming from the
two end points do not have any overlapping region initially, i.e. those two points were never in
causal communication and thus there is no reason they should have the same temperature with
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the accuracy of 10−5: we must impose a heavy fine tuning over 104− 105 causally disconnected
patches at the moment of the last scattering unless we provide a natural way for them to have
the same temperature. This is the so-called horizon problem. It is depicted in the left panel
of Figure 3. Note that the spatial distance shown in the figure is the comoving one, thus the
physical distance is obtained by multiplying the scale factor a(t) which vanishes as we approach
the cosmic singularity, currently at τ = 0.

Figure 3: (Left) conformal diagram of the universe. From the cosmic singularity (τi = 0) until
the moment of the CMB generation (τCMB) there was no time for the CMB to achieve causal
communication to have the same temperature T0. (Right) As a sample calculation, we can see
that at that time the universe was filled with 104 − 105 causally disconnected patches.

To have a better idea, let us assume that the observable CMB size coincides with the current
Hubble patch 1/H0, within which causal communications are possible. Then let us ask whether
they were the same when the CMB was generated, or if different how much they were different.
First, what is λH−1

0
, the physical size that corresponds to 1/H0? Physical sizes simply scale

with the scale factor a(t), which is inversely proportional to the temperature T . Thus, we can
easily find

λH−1
0

= H−1
0

aCMB

a0

= H−1
0

T0

TCMB

. (35)

Meanwhile, H evolves according to the Friedmann equation (21). It is important to notice
at this moment that H depends on the energy density, i.e. which types of matter contents
are there. For simplicity we assume the universe is dominated by matter that is inversely
proportional to the physical volume as can be read from (27). Thus, we can find H−1

CMB, the
Hubble horizon radius when the CMB was generated, as

H2 ∝ ρmatter ∝ a−3 ∝ T 3 −→ H−1
CMB = H−1

0

(
T0

TCMB

)3/2

. (36)

Thus, if we compare the ratio of these volumes,

λ3
H−1

0(
H−1

CMB

)3 =

(
TCMB

T0

)3/2

∼ 4× 104 . (37)
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That is, assuming that at present the Hubble horizon size and the CMB scale are the same,
when the CMB was generated, the corresponding physical volume was filled with 104 - 105

causally disconnected patches: see the right panel of Figure 3. Thus, it is a tremendous fine
tuning that these disconnected patches all turn out to have the same temperature with the
accuracy of 10−5 as the current observations on the CMB demand!

1.3 Inflation

1.3.1 Inflation: what and how

Thus, we see that at the heart of the horizon problem lies the fact that the Hubble horizon
1/H = 1/ (ȧ/a) always expands faster than the physical length scale λ ∼ a,

d

dt

(
λ

H−1

)
∼ d

dt

[
a

(ȧ/a)−1

]
= ä < 0 , (38)

irrespective of whether the universe is dominated by matter or radiation. Thus, we can just turn
upside down and make the physical size expands faster than the Hubble horizon: then physical
scales expand faster than the horizon so causal communication could be possible during this
stage. This tells us

d

dt

(
λ

H−1

)
> 0←→ ä > 0 . (39)

That is, the universe experiences an accelerated expansion. This period of accelerated expansion
is called “inflation”.

How can we more quantitatively say if it’s inflation or not? We can rewrite (24) as

ä

a
=

2ρ

6m2
Pl

− 3ρ+ 3p

6m2
Pl

= H2 + Ḣ > 0 , (40)

where the 2nd equality follows by applying (21) and (23), and the last inequality is the definition
of inflation (39). Thus, inflation occurs when the following condition is satisfied:

ε ≡ − Ḣ

H2
< 1 . (41)

This parameter, which tells whether it’s inflation or not, is called “slow-roll” parameter, in the
context of slow-roll inflation: see the next section.

So with what kind of matter can we have inflation? From (24), we see that to have ä > 0
we need a special form of matter which has a negative pressure,

p < −ρ
3
←→ w ≡ p

ρ
< −1

3
. (42)

Clearly usual pressureless matter (w = 0) or radiation (w = 1/3) cannot support inflation. The
simplest candidate is the so-called cosmological constant Λ, which has

pΛ = −ρΛ (wΛ = −1) . (43)
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Then the Friedmann equation (21) is trivially solved: since Λ is, as the name suggests, a
constant thus

H2 =

(
ȧ

a

)2

=
Λ

3m2
Pl

= constant←→ a = ai exp

(√
Λ

3m2
Pl

t

)
. (44)

Thus we can see that the scale factor increases exponentially during inflation.

1.3.2 Horizon problem revisited

So the question is: how does inflation solve the horizon problem? Now we can move to the
conformal time to see a clear visualization how inflation solves the horizon problem. Dur-
ing inflation, for convenience driven by a cosmological constant Λ so that H is constant, the
conformal time is given by

τ =

∫
dt

a
=

∫
e−Ht

a0

dt = − 1

aH
< 0 . (45)

That is, the conformal time is negative during inflation. Further, now the cosmic singularity
a = 0 can be pushed to τ = −∞. Thus, even the two end points at τ = τCMB have no overlap
at τ = 0, now τ can be negatively indefinite so that there could be ample overlapping region
enough to explain the homogeneity of the CMB.

Figure 4: (Left) conformal diagram of the universe, this time including inflation. Inflation
extends τ to −∞, giving ample room for causal communication well before the onset of hot
big bang evolution at τ = 0. (Right) Inflation corresponds to the period when the physical size
λ ∼ a expands faster than the Hubble horizon 1/H.
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As is clear from Figure 4, the longer inflation last, the larger the overlapping region becomes.
Thus we need a certain duration of of inflation to explain the homogeneous CMB. The amount
of inflation is quantified by the number of e-folds N between some initial (i) and final (f)
moments, which is given by

N =

∫ f

i

Hdt =

∫ f

i

da

a
= log

(
af
ai

)
. (46)

Thus, with a given N , the final scale factor is related to the initial scale factor by af = aie
N ,

i.e. the universe has expanded by eN times. Now we can compute how large N should be for
the CMB. The most natural way is that at the beginning of inflation (or the part of inflation
relevant for our observable universe) the physical length scale λH−1

0
is smaller than the Hubble

horizon during inflation HI so that causal communication has been established within λH−1
0

to
have the same temperature. This gives

λH−1
0

= H−1
0

ai
a0

= H−1
0

af
a0

ai
af

= H−1
0

T0

Tf
e−N < H−1

I . (47)

Thus, solving for N from the last inequality, we obtain

N > log

(
T0

H0

)
− log

(
Tf
HI

)
∼ 67− log

(
Tf
HI

)
, (48)

where we have used H0 ∼ 10−42GeV and T0 ∼ 10−13GeV. Thus, assuming that the logarithmic
term which includes two unknown factors give a number of O(1), we require that

N & 60 . (49)

That is, to explain the homogeneity of the CMB, i.e. to solve the horizon problem, we need 60
e-folds of expansion: during inflation the universe should have expanded by e60 ∼ 1026 times.

1.3.3 Slow-roll inflation

The cosmological constant is obviously the simplest candidate that drives inflation, but the
problem is that if this is the case, inflation never ends and we cannot recover the universe
in which we leave with stars, galaxies, clusters of galaxies and so on. Thus, we need some
different material which can mimic the cosmological constant and at the same time provide
a “graceful exit” from inflation. This is usually achieved by a scalar field φ. For simplicity
here we assume that this scalar field, named “inflaton” in the sense that it drives inflation, is
minimally coupled to gravity and has canonical kinetic term. Then the action is the sum of
the gravitational sector, which we take the Einstein-Hilbert action, and the matter sector:

S =

∫
d4x
√
−gm

2
Pl

2
R +

∫
d4x
√
−g
[
−1

2
gµν∂µφ∂νφ− V (φ)︸ ︷︷ ︸

≡Lm

]
. (50)

The corresponding energy-momentum tensor Tµν of φ can be obtained by perturbing the matter
Lagrangian with respect to gµν ,

Tµν = − 2√
−g

δ (
√
−gLm)

δgµν
= gµνLm − 2

δLm
δgµν

= ∂µφ∂νφ− gµν
[

1

2
gρσ∂ρφ∂σφ+ V (φ)

]
. (51)
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Then we can easily compute 00 and ii components which can then be matched to the energy
density and pressure respectively [see (20)]:

ρ = T 0
0 =

1

2
φ̇2 + V , (52)

p =
1

3
T ii =

1

2
φ̇2 − V . (53)

Thus, if potential dominates over the kinetic energy (φ̇2 � V ) these simplify to ρ ≈ V ≈ −p,
thus the inflaton provides a nearly cosmological constant, leading to an exponential expansion
of the universe – inflation!

Let us first write the background equation of motion for φ. From this we can find a number
of useful formulae which do not resort to the dynamics of φ but to V and its derivatives only.
The equation of motion for φ can be found from the Euler-Lagrange equation,

∂µ

[
∂L

∂(∂µφ)

]
=
∂L
∂φ

. (54)

This gives

−�φ+
∂V

∂φ
= 0 , (55)

where

� ≡ 1√
−g

∂µ
(√
−ggµν∂ν

)
= − ∂2

∂t2
− 3H

∂

∂t
+

∆

a2
, (56)

with ∆ ≡ δij∂i∂j being the spatial Laplacian operator. Here for the last equality we have taken
the background metric. Thus, the background field φ = φ(t) follows the equation of motion

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 . (57)

So how this equation for φ simplifies? From (24), using (52) and (53) we require

ä

a
= − φ̇

2 − V
3m2

Pl

> 0 . (58)

[Note that we can again precisely find (41) by using (52) and (53) for (21) and (23)] Then this
means

φ̇2 < V . (59)

Taking a time derivative on both sides, this says φ̈ < ∂V/∂φ. Thus, (57) is simplified to

3Hφ̇+
∂V

∂φ
= 0 . (60)

Thus we can replace φ̇, or more generally the dynamics of φ, with the derivatives of the potential
V .

Then now let us consider the slow-roll parameter ε, (41). Applying (60), we find

ε = − Ḣ

H2
≈ φ̇2/(2m2

Pl)

V/(3m2
Pl)
≈ 3

2

1

V

V ′2

9H2
≈ m2

Pl

2

(
V ′

V

)2

, (61)
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where V ′ ≡ ∂V/∂φ. Thus, ε in the slow-roll approximation tells us how steep the potential slope
is. We can introduce another important slow-roll parameter η, which describes how quickly ε
evolves:

η ≡ ε̇

Hε
≈

[
H
m2

Pl

2

(
V ′

V

)2
]−1

m2
Pl

V ′

V

[
V ′′

V
−
(
V ′

V

)2
]
φ̇ ≈ 2m2

Pl

V ′′

V
+ 4ε . (62)

Also note that in the slow-roll approximation the e-fold N can be written in terms of the
potential solely:

N =

∫ f

i

Hdt =

∫ f

i

H
dt

dφ
dφ =

∫ f

i

H

φ̇
dφ ≈ 1

m2
Pl

∫ i

f

V

V ′
dφ . (63)
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2 Perturbation equations

Having discussed about background, now we move to the linear cosmological perturbations in
the context of single field inflation. The purpose is to derive the equations of motion for the
relevant perturbations.

2.1 Perturbed Einstein equation

We first consider the LHS of the Einstein equation. Here the perturbations are in the metric
tensor gµν . Including (linear) perturbations in (5), the most general perturbed metric is written
as

ds2 = −(1 + 2A)dt2 + 2aBidtdxi + a2 [(1 + 2ϕ)δij + 2Eij] dxidxj . (64)

The inverse metric can be found by requiring gµρgρν = δµν . For example, if we assume the form
g00 = −1 + α and g0i = βi with α and βi being the perturbations,

g0µgµ0 = 1 = g00g00 + g0igi0 = (−1 + α)(−1− 2A) + βiaBi ≈ 1 + 2A− α , (65)

so that at linear order we can find α = 2A. In the similar way, after some calculations, we can
find all the components of the inverse metric as

δg00 = −2A , δg0i = aBi , δgij = 2a2 (ϕδij + Eij) ,
δg00 = 2A , δg0i = a−1Bi , δgij = 2a−2

(
−ϕδij − E ij

)
,

(66)

where the index of Bi and Eij is raised and lowered by δij. Then, what’s left is a straightforward
but a bit tedious calculation, and we obtain

δG00 = 6Hϕ̇+
2

a2

{
−∆ϕ− aHBi,i + a2

[
HĖ ii +

1

2

(
E ij ,ij −∆E ii

)]}
, (67)

δG0i = 2 (−ϕ̇+HA),i − a
(

2Ḣ + 3H2
)
Bi +

1

2a

(
Bj ,ij −∆Bi

)
+
(
Ė j i,j − Ė jj,i

)
, (68)

δGij = a2
(
−2ϕ̈+ 2H

(
Ȧ− 3ϕ̇

)
+ 2

(
2Ḣ + 3H2

)
(A− ϕ)

+
1

a2

{
∆(A+ ϕ) + a2

(
Ḃk + 2HBk

)
,k
− a2

[
Ëkk + 3HĖkk +

(
Ekl,kl −∆Ekk

)]})
+

{
−(A+ ϕ),ij − a

[
Ḃi,j + Ḃj,i

2
+H (Bi,j + Bj,i)

]

+a2

[
Ëij + 3HĖij − 2

(
2Ḣ + 3H2

)
Eij +

1

a2

(
Ekj,ik + Eki,jk − Ekk,ij −∆Eij

)]}
.

(69)

At this point, it is very convenient to decompose the vector and the tensor components
of the metric perturbations Bi and Eij into pure scalar, transverse vector and transverse and
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traceless tensor components such as2

Bi = B,i + Si ,

Eij = E,ij +
1

2
(Fi,j + Fj,i) +

1

2
hij ,

(70)

where the pure vectors Si and Fi and the pure tensor hij satisfy

Si,i = F i
,i = 0 , (71)

hii = hij,i = 0 . (72)

Then, initially Si and F i have 3 degrees of freedom each, but the transverse consitions remove
1 each so that in the vector perturbations Si and F i there are total 4 degrees of freedom.
Likewise, while the symmetric 3×3 matrix (or rank-2 tensor) hij has 6 degrees of freedom, but
after applying the transverse and traceless conditions 4 of them are removed, and we are left
with 2 degrees of freedom. Note that there are 4 scalar degrees of freedom in the metric, A, B,
ϕ and E. These sum up to have total 10 degrees of freedom for the metric perturbations. This
is in agreement with the observation that the 4×4 matrix gµν has 10 independent components.

After applying the decomposition of the scalar, vector and tensor components (70), we can
after some calculations obtain each component of the Einstein equation as

δG0
0 = 6H (−ϕ̇+HA)− 2

∆

a2

[
−ϕ−H

(
aB − a2Ė

)]
, (73)

δG0
i = −2 (−ϕ̇+HA),i +

∆

2a
Si −

∆

2
Ḟi , (74)

δGi
i = 6

[
d

dt
(−ϕ̇+HA) + 3H (−ϕ̇+HA) + ḢA+

∆

3a2
D

]
, (75)

δGT i
j = δGi

j −
1

3
δijδG

k
k

= − 1

a2

(
∂i∂j − δij

∆

3

)
D

+

[
− 1

2a

(
Ṡi + 2HSi

)
+

1

2

(
F̈ i + 3HḞ i

)]
,j

+

[
− 1

2a

(
Ṡj + 2HSj

)
+

1

2

(
F̈j + 3HḞj

)],i
+

1

2

(
ḧij + 3Hḣij −∆hij

)
, (76)

2Note that we may from the beginning include the scale factor in such a way that

Bi =
B̃,i
a

+ Si ,

Eij =
Ẽ,ij
a2

+
1

2a

(
F̃i,j + F̃j,i

)
+

1

2
hij .

This will eliminate additional scale factor dependence in the Einstein equation and in that sense more convenient
than the above notation. However, many literature adopt the notation without the scale factor dependence so
we keep presenting the results in that notation.
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where

D ≡ (A+ ϕ) + a
(
Ḃ + 2HB

)
− a2

(
Ë + 3HĖ

)
= (A+ ϕ) +

d

dt

(
aB − a2Ė

)
+H

(
aB − a2Ė

)
. (77)

Note that we have decomposed the ij spatial component into trace and traceless parts. When
i = j, we can trivially see that δGT i

j = 0 as it should be.
For the RHS of the Einstein equation, we have an additional scalar perturbation, that is,

the perturbation of the inflaton field δφ. From the expression of the energy-momentum tensor
of φ (51), including the metric perturbations we can straightforwardly find each component as

δT 0
0 = −

[
φ̇
(

˙δφ− φ̇A
)

+ V ′δφ
]
, (78)

δT 0
i = −φ̇δφ,i , (79)

δT ii =
1

3

[
φ̇
(

˙δφ− φ̇A
)
− V ′δφ

]
, (80)

δT T
i
j = 0 . (81)

There is an important remark at this point. As we can see, at linear order the scalar, vector and
tensor components of the perturbations are all decoupled. Thus we can consider each component
independent of the others.

Now we can write each component of the scalar, vector and tensor perturbations separately.
They are given by

00 component: 3H (−ϕ̇+HA)− ∆

a2

[
−ϕ−H

(
aB − a2Ė

)]
= − 1

2m2
Pl

[
φ̇
(

˙δφ− φ̇A
)

+ V ′δφ
]
, (82)

Scalar 0i component: − ϕ̇+HA =
1

2m2
Pl

φ̇δφ , (83)

Vector 0i component: Si − aḞi = 0 , (84)

Trace ij component:
d

dt
(−ϕ̇+HA) + 3H (−ϕ̇+HA) + ḢA+

∆

3a2
D

=
1

2m2
Pl

[
φ̇
(

˙δφ− φ̇A
)
− V ′δφ

]
, (85)

Traceless scalar ij component: D = 0 , (86)

Traceless vector ij component:
d

dt

(
Si − aḞ i

)
+ 2H

(
Si − aḞ i

)
= 0 , (87)

Traceless tensor ij component: ḧij + 3Hḣij −
∆

a2
hij = 0 . (88)

Thus, we can find an important fact: if inflation is driven by a single (canonical) inflaton
field, there exists only scalar component so that the vector and tensor metric perturbations are
unsourced. Also there exist no anisotropic stress either, which gives D = 0.
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2.2 Gauge transformations

Before we begin the discussion on the scalar perturbations, we consider the issue of “back-
ground” and “perturbation”. In the background universe U , there is no ambiguity in choosing
the time coordinate on the homogeneous and isotricpic spatial hypersurfaces in such a way
that time is constant: t = t1 corresponds to the moment when the homogeneous scalar field
has a specific value of φ(t = t1), and so on. However, in a perturbed universe Û , our choice
of time is arbitrary in the sense that we can choose arbitrary coordinate system where the
deviation from homogeneity and isotropy is small. In different coordinate systems, the notion
of perturbations is different too. For example, we can choose spatial hypersurfaces on which
the density perturbation vanishes. Thus, just saying that the density perturbation is such and
such is not enough. We have to also specify the coordinate system in describing the density
perturbation.

Let us consider in a more detail. How can we define the perturbation in a scalar quantity
φ̂ at a point p in the perturbed universe Û? To define the perturbation, we need to specify
the corresponding background value φ0: the difference between φ̂ and φ0 is the perturbation
δφ(p). But what is the corresponding background φ0? For this, we have to specify a coordinate

system, or mapping in such a way that each point in the perturbed universe Û is associated
with the corresponding point xµ in the background universe U . Once this mapping is specified,
the perturbation

δφ(p) = φ̂(p)− φ0(xµ) (89)

is meaningful.

Figure 5: A schematic image of gauge transformation.

So to specify perturbations we only need to specify the coordinate system, or the mapping
between Û and U . The problem is, as stated before, there is no natural choice of this mapping
and one is as good (or bad) as the others. Thus we need to know how one mapping is related to
another. It’s very important to note that any change induced by a change in the mapping is not
physical: it is simply a transformation because we have changed the coordinate, or “gauge”, to
describe the same thing. In this sense, this non-physical change is called gauge transformation.
Suppose 2 coordinate systems, xµ and x̂µ, which map p in Û to the corresponding different
points in U , are related by

x̂µ(p) = xµ(p) + ξµ(xν(p)) . (90)
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If this transformation is infinitesimal, we have

δ̂φ(p) = φ̂(p)− φ0(x̂µ(p))

= δφ(p)− [φ0(x̂µ(p))− φ0(xµ(p))]

= δφ(p)− ξν ∂φ0

∂xν
(xµ(p)) . (91)

From below, we drop the subscript 0 to denote the background quantities. Since the background
universe U is spatially homogeneous and isotropic, we simply have

δ̂φ(p) = δφ(p)− φ̇(t(p))ξ0(xµ(p)) , (92)

where we have taken x0 = t. It is very important to note that we are comparing 2 different
mappings, xµ(p) and x̂µ(p), from the same point p in Û . It is schematically shown in Fig. 5.

Note that we can extract the gauge transformations of the metric perturbations by requiring
that ds2 be invariant under the gauge transformation3: with the coordinate transformations

t→ t̂ = t+ ξ0(t,x) , (93)

xi → x̂i = xi + ξi(t,x) , (94)

we can easily see that in the linear order

a
(
t̂
)
≡ â =

(
1 +Hξ0

)
a(t) , (95)

d̂t =
(

1 + ξ̇0
)
dt+ ξ0

,idx
i , (96)

d̂xi = dxi + ξ̇idt+ ξi,jdx
j . (97)

From the fact that the line element in space-time is the same irrespective of the coordinate
transformation, we can write

d̂s
2

=−
(

1 + 2Â
)
d̂t

2
+ 2âB̂id̂td̂xi + â2

[
(1 + 2ϕ̂) δij + 2Êij

]
d̂xid̂xj

=−
[
1 + 2

(
Â+ ξ̇0

)]
dt2 + 2a

(
B̂i −

ξ0
,i

a
+ aξ̇i

)
dtdxi

+ a2

{[
1 + 2

(
ϕ̂+Hξ0

)]
δij + 2

(
Êij +

ξi,j + ξj,i
2

)}
dxidxj , (98)

where ξi = δijξ
j. Equating this expression with (64), we can find that under the coordinate

transformation given by (93) and (94), the new metric perturbations are given by

Â = A− ξ̇0 , (99)

B̂i = Bi +
ξ0
,i

a
− aξ̇i , (100)

ϕ̂ = ϕ−Hξ0 , (101)

Êij = Eij −
ξi,j + ξj,i

2
. (102)

3Generic gauge transformation law for an arbitrary tensor can be written in terms of the Lie derivatives, but
we do not consider this approach here but follow simpler one.
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Further, we can decompose the spatial gauge transformation vector ξi into the scalar and
transverse vector components as we did for the metric perturbation,

ξi = δijξ,j + ξ(tr)i , (103)

where ξ(tr)i
,i = 0. Then, we can find trivially that the scalar, vector and tensor components of

Bi and Eij transform as

B̂ = B +
ξ0

a
− aξ̇ , (104)

Ŝi = Si − aξ̇(tr)
i , (105)

Ê = E − ξ , (106)

F̂i = Fi − ξ(tr)
i , (107)

ĥij = hij . (108)

Notice that the tensor perturbation hij as well as the combination Si − aḞi remain the same
under the gauge transformation, i.e. it is gauge invariant. Thus, when we consider the vector
and tensor perturbations, we need not worry about the gauge ambiguity because the variables
we are dealing with are from the beginning gauge invariant. Gauge ambiguity only matters for
scalar perturbations, and we will explicitly discuss this issue in the following section.

Also, it is fruitful to consider the gauge transformation property of the scalar components
of the Einstein equation more closely before we write the relevant equation for the scalar
perturbations. As we can see, they include all the metric perturbations, but B and E only
appear in the specific combination aB − a2Ė: see (77) and (82). Now, from (104) and (106),
we can see that

aB̂ − a2 ˙̂
E = a

(
B +

ξ0

a
− aξ̇

)
− a2 d

dt
(E − ξ) = aB − a2Ė + ξ0 , (109)

so that although the transformations of B and E include the spatial component of the gauge
transformation ξ, in practice only ξ0, the time translation matters.

2.3 Scalar perturbations

There are 2 strategies one could take to deal with this gauge ambiguity in scalar perturbations.
First, one could fix the gauge by choosing the perturbation in some physical quantity of interest
to vanish. For example, one could choose the perturbation in φ̂ to vanish. Temporarily treating
ξ0 as a finite gauge transformation, and working to 1st order in perturbation variable, from
(92)

δ̂φ(p) = 0 = δφ(p)− φ̇(t(p))ξ0(xµ(p)) , (110)

and ξ0 is fixed to be

ξ0 =
δφ

φ̇
≡ ξ0

δφ . (111)

This is the time translation from an arbitrary hypersurface to the one where δφ vanishes, with
δφ evaluated at that arbitrary hypersurface: this gauge fixing of ξ0 fixes the constant time
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hypersurfaces in Û to be constant φ̂ hypersurfaces with the time parametrization t(p) fixed by

φ(t(p)) = φ̂(p).
Alternatively, one could just use gauge invariant quantities like hij and the combination

Si − aḞi. For example, let us consider

R = ϕ− H

φ̇
δφ , (112)

which is gauge invariant:

R̂ = ϕ̂− H

φ̇
δ̂φ

=
(
ϕ−Hξ0

)
− H

φ̇

(
δφ− ξ0φ̇

)
= ϕ− H

φ̇
δφ = R . (113)

The physical interpretation of this gauge invariant quantity is clear: if we insert (111), we
immediately find

R = ϕ−Hξ0
δφ ≡ ϕδφ , (114)

i.e. R is the perturbation in the spatial curvature ϕ on the hypersurfaces where δφ = 0. When
the universe is dominated by φ, we can see from (79) that T 0

i = 0 so we do not see momentum
flux. In this sense, this gauge condition is called “comoving”, and correspondingly R is called
comoving curvature perturbation. Note that R can be evaluated on arbitrary hypersurfaces as
it is independent of gauge.

Now we find the equation of motion for R in 3 different ways. The reason why we consider
R, not other scalar perturbations, is twofold and will be obvious soon. Let us just proceed at
the moment.

1. First we choose a different gauge and find the equation for R. This is possible since R is
gauge invariant. Let us choose the so-called Newtonian gauge, or sometimes called zero
shear gauge. In this gauge, we choose

B = E = 0 . (115)

Note that from (106) E = 0 fixes the spatial gauge ξ, and in turn also fixes the temporal
gauge ξ0. The reason why it is called zero shear gauge is that in this gauge aB−a2Ė = 0
[which from (109) fixes ξ0] which is identified as the shear. Also, from (77) and (86) we
can set

A = −ϕ ≡ Φ . (116)

Then the metric is written as

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Φ)δijdx
idxj , (117)

which coincides with the weak field limit where the Newtonian gravitatoinal potential is
identified as the perturbation in the 00 component. This is the reason why it is called
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“Newtonian” gauge. Also note that until this stage, we have eliminated 3 scalar degrees
of freedom.

Now, the scalar 00, 0i and trace ij equations are respectively reduced to

3H
(

Φ̇ + 3HΦ
)
− ∆

a2
Φ = − 1

2m2
Pl

[
φ̇
(

˙δφ− φ̇Φ
)

+ V ′δφ
]
, (118)

Φ̇ + 3HΦ =
1

2m2
Pl

φ̇δφ , (119)

d

dt

(
Φ̇ + 3HΦ

)
+ 3H

(
Φ̇ + 3HΦ

)
+ ḢΦ =

1

2m2
Pl

[
φ̇
(

˙δφ− φ̇Φ
)
− V ′δφ

]
. (120)

The remaining 2 degrees of freedom are Φ and δφ, and we have 3 equations. Thus 1 of
these equations are redundant and we can use only 2 of them to solve Φ and δφ. We use
00 and 0i components, since they are simpler. Note that R is written as, with the RHS
of (112) evaluated on this gauge,

R = −Φ− H

φ̇
δφ . (121)

From 00 equation (118),

3H
(

Φ̇ + 3HΦ
)
− ∆

a2
Φ = − 1

2m2
Pl

[
φ̇ ˙δφ− φ̇2Φ−

(
φ̈+ 3Hφ̇

)
δφ
]

= − 1

2m2
Pl

(
φ̇ ˙δφ− φ̈δφ

φ̇2
φ̇2 − φ̇2Φ− 3Hφ̇δφ

)

= − φ̇2

2m2
Pl

[
d

dt

(
δφ

φ̇

)
− Φ

]
+ 3H

(
Φ̇ + 3HΦ

)
, (122)

where for the 1st equality we have used (57) to eliminate V ′, and for the 2nd equality
(119) to eliminate φ̇δφ. Thus, we have

d

dt

(
δφ

φ̇

)
= Φ− 1

Ḣ

∆

a2
Φ . (123)

Further, taking a derivative for (121) we find

Ṙ = −Φ̇− Ḣ δφ

φ̇
−H d

dt

(
δφ

φ̇

)
= −Φ̇− Ḣ

φ̇
2m2

Pl

(
Φ̇ +HΦ

)
−H

(
Φ− 1

Ḣ

∆

a2
Φ

)
=
H

Ḣ

∆

a2
Φ , (124)

where for the 2nd equality we have used (119) and (123). Thus we can write Φ in terms
of R as

Φ =
Ḣ

H
a2∆−1Ṙ , (125)
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where ∆−1 is the inverse Laplacian operator. Finally, we put all these into (119). The
LHS becomes, using (125),

Φ̇ +HΦ = a2 Ḣ

H
∆−1

[
R̈+

(
3H +

2φ̈

φ̇
− Ḣ

H

)
Ṙ

]
. (126)

Meanwhile, the RHS becomes

1

2m2
Pl

φ̇δφ =
Ḣ

H
(R+ Φ)

=
Ḣ

H

(
R+ a2 Ḣ

H
∆−1Ṙ

)

= a2 Ḣ

H
∆−1

(
∆

a2
R+

Ḣ

H
Ṙ

)
, (127)

where for the 1st equality we have used (121), and for the 2nd equality (125). Thus,
equating the LHS and RHS, we find finally the equation of motion for R as

R̈+

(
3H +

2φ̈

φ̇
− 2Ḣ

H

)
Ṙ − ∆

a2
R =

1

a3ε

d

dt

(
a3εṘ

)
− ∆

a2
R = 0 . (128)

2. Next we work in the comoving gauge from the beginning to write the equation for R.
This is as we will soon see much simpler than the 1st approach. But we place this as
the 2nd approach, since it has some illuminating aspects for the 3rd approach we will
consider next.

Comoving gauge, as we have already considered, requires δφ = 0. This fixes the temporal
gauge, thus we need to fix the spatial gauge by imposing E = 0. (this is not explic-
itly stated in some literatures) Writing ϕ = R, the 00, 0i and traceless ij components
respectively become

3H
(
−Ṙ+HA

)
+

∆

a2
(R+ aHB) =

φ̇2

2m2
Pl

A , (129)

−Ṙ+HA = 0 , (130)

(A+R) +
d

dt
(aB) + aHB = 0 . (131)

Note that the trace ij equation vanishes identically upon imposing (130) and (131). Now,
from (130) and then (129), we can solve for A and B as

A =
Ṙ
H
, (132)

aB = −R
H

+ a2ε∆−1Ṙ . (133)
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The fact that 00 and 0i equations can be algebraically solved in terms of R is not a
mere coincidence. We will return to this point in the next approach. Then, plugging the
solutions for A and B into (131), we have

Ṙ
H

+R+
d

dt

(
−R
H

+ a2ε∆−1Ṙ
)

+H

(
−R
H

+ a2ε∆−1Ṙ
)

= 0 . (134)

Applying the Laplacian operator ∆ to remove the spurious inverse Laplacian operator
∆−1, we find

d

dt

(
a2εṘ

)
+ a2εHṘ − ε∆R = a2ε

[
1

a3ε

d

dt

(
a3εṘ

)
− ∆

a2
R
]

= 0 , (135)

so we reach the same equation of motion for R.

3. Finally, we resort to the action approach which will be more directly related to the
quantization procedure in the next section. We begin with the action (50), and including
the 5 scalar perturbations we write the action quadratic in these perturbations. This is
because the linear equation of motion follows from the quadratic action. The steps to write
the quadratic action are straightforward but a bit tedious. Those interested are strongly
recommended to refer to the seminal review by Mukhanov, Feldman & Brandenberger
(1992), Section 10 there, for the detailed steps. We start from the obtained quadratic
action, in the conformal time,

S
(s)
2 =

∫
d4x

m2
Pl

2
a2
[
−6ϕ′

2
+ 12HAϕ′ − 2

(
H′ + 2H2

)
A2 − 2(2A+ ϕ)δφ

+
1

m2
Pl

(
δφ′

2
+ δφ∆δφ− a2Vφφδφ

2
)

+
2

m2
Pl

(
−3φ′ϕ′δφ− φ′Aδφ′ − a2VφAδφ

)
+4

(
1

2m2
Pl

φ′δφ+ ϕ′ −HA
)

∆(B − E ′)
]
, (136)

where a prime denotes a derivative with respective to the conformal time (instead we
write ∂V/∂φ ≡ Vφ) and H ≡ a′/a. As we have noted before, at this order the scalar
perturbations are not mixed with vector and tensor ones and we can separately consider
them at linear order. We can note that ϕ, δφ and E have time derivatives, while A and
B not. Hence A and B do not give dynamical evolution, and their equations of motion
are constraints which can be solved at any time and then can be plugged back into the
action, since they are always satisfied. That is, after some arrangement we should be able
to write ϕ, δφ and E in the canonical form with the Hamiltonian H(s) while A and B are
multiplied by their equations of motion, viz. constraints,

L(s)
2 = Πϕϕ

′ + Πδφδφ
′ + ΠEE

′ − H(s) − CAA− CBB . (137)

Thus we can understand why 00 and 0i equations in the previous approach were solved
algebraically: it is because of the structure of the Lagrangian. By construction 00 and 0i
equations are constraints4.

4This point becomes more transparent if the metric is written in the so-called Arnowitt-Deser-Misner form,
which in this lecture is not covered.
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We can easily find the conjugate momentum of ϕ, δφ and E as

Πϕ ≡
δ

δφ′
L(s)

2 =
m2

Pl

2
a2

[
−12ϕ′ + 12HA− 6

m2
Pl

φ′δφ+ 4∆(B − E ′)
]
, (138)

Πδφ ≡
δ

δ(δφ′)
L(s)

2 = a2 (δφ′ − φ′A) , (139)

ΠE ≡
δ

δE ′
L(s)

2 =
m2

Pl

2
a2∆

(
−4ϕ′ + 4HA− 2

m2
Pl

φ′δφ

)
. (140)

Combining Πϕ and ΠE we can write

∆(B − E ′) =
1

2m2
Pla

2

(
Πϕ − 3∆−1ΠE

)
, (141)

and from Πδφ we can write δφ′ as

δφ′ =
Πδφ

a2
+ φ′A . (142)

Then, after some straightforward but tedious calculations, we find

L(s)
2 = Πϕϕ

′ + Πδφδφ
′ + ΠEE

′

−
{

1

2a2m2
Pl

[
−Πϕ∆−2ΠE +

3

2

(
∆−1ΠE

)2
+m2

PlΠ
2
δφ

]
− 1

2m2
Pl

φ′Πϕδφ

+a2m2
Pl

[
ϕ∆ϕ− 3

4m2
Pl

φ′
2
δφ2 − 1

2m2
Pl

(
δφ∆δφ− a2Vφφδφ

2
)]}

−
[
HΠϕ + φ′Πδφ + 2a2m2

Pl∆ϕ+ a2
(
3Hφ′ + a2Vφ

)
δφ
]
A− ΠEB . (143)

This Lagrangian is of the form (137). The equations of motion for A and B are simply
the constraints CA = 0 and CB = 0. From CB = 0, E disappears, and from CA = 0, Πδφ is
written in terms of Πϕ, ϕ and δφ (or Πϕ can be replaced as well).

After plugging back the solutions of the constraints and rearrangement, the quadratic
Lagrangian becomes

L(s)
2 =

(
Πϕ +

2a2m2
Pl

φ′
∆δφ

)(
ϕ−Hδφ

φ′

)′
− 2m2

PlH
φ′2

(
Πϕ +

2a2m2
Pl

φ′
∆δφ

)
∆

(
ϕ−Hδφ

φ′

)
− H2

2a2φ′2

(
Πϕ +

2a2m2
Pl

φ′
∆δφ

)2

− 2a2m2
Pl

φ′2

[
∆

(
ϕ−Hδφ

φ′

)]2

− a2m2
Pl

(
ϕ−Hδφ

φ′

)
∆

(
ϕ−Hδφ

φ′

)
. (144)

We can redefine another set of canonical variables that combine Πϕ and ϕ with δφ as

R ≡ ϕ− H
φ′
δφ , (145)

ΠR ≡ Πϕ +
2a2m2

Pl

φ′
∆δφ , (146)

22



and we finally find the quadratic Lagrangian without any constraint

L(s)
2 = ΠRR′ −

[
2a2m2

Pl

φ′2

(
∆R+

H
2a2m2

Pl

)2

+ a2m2
PlR∆R︸ ︷︷ ︸

≡HR

]
. (147)

This Lagrangian has no constraint and is of canonical form, thus now we are left with a
single physical variable – the comoving curvature perturbation! We can write this in a
more well-known form by eliminating ΠR in favour of R′. From the Hamiltonian equation
of motion,

δHR
δΠR

= R′ , (148)

we can find
H

2a2m2
Pl

ΠR =
φ′2

2m2
PlH
R′ −∆R . (149)

Then we trivially find

L(s)
2 =

1

2

(
aφ′

H

)2 [
R′2 − (∇R)2

]
. (150)

At this point, we return to the cosmic time then we can immediately find that

S
(s)
2 =

∫
dτd3x

1

2

(
aφ′

H

)2 [
R′2 − (∇R)2

]
=

∫
dtd3xa3εm2

Pl

[
Ṙ2 − (∇R)2

a2

]
, (151)

and the equation that follows from this action is

1

a3ε

d

dt

(
a3εṘ

)
− ∆

a2
R = 0 , (152)

thus again we recover the same equation of motion for R!

So it’s a good moment to come up with 1 reason why we consider R. As we have seen,
initially we begin with 5 scalar perturbations: A, B, ϕ, E and δφ. But eventually we can
eliminate 4 of them and are left with only 1 single physical degree of freedom: in the 1st
approach, we eliminate B and E, and A and ϕ are the same, and δφ can be replaced by using
the Einstein equation. In the 2nd approach, E and δφ are set to be zero, and A and B are
solved in terms of ϕ = R. In the 3rd approach, A and B are solved and E is found to be
vanishing, and we can eliminate δφ in favour of ϕ or vice versa. In fact this has deeper reason.
In general relativity, we have 2 scalar gauge transformation functions, ξ0 and ξ, as well as 2
constraint equations. Thus, solving each eliminates 1 degree of freedom, so we are after all left
with a single degree of freedom: R. Of course this gives the reason why we can work with
R, but not why we should (or are highly recommended to) work with R, not with any other
perturbation variable. This reason will be clear in the next section by solving the equation of
motion for R on very large scales.
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2.4 Vector and tensor perturbations

2.4.1 Vector perturbations

The vector equation (84) simply says there is no vector perturbation! Even if Si−aḞ i ≡ X i 6= 0
initially, from (87)

Ẋi + 2HXi = 0 . (153)

This immediately gives a solution
Xi ∝ a−2 . (154)

During inflation a ∼ eHt, even if initially non-zero, vector perturbation decays exponentially.
This is why usually vector perturbation is neglected in the context of inflation5.

Let us now be more formal to look into the vector perturbations. As we did for the scalar
perturbations in the previous section, we can find the 2nd order action for the vector pertur-
bations after expanding the action up to 2nd order. The result is

S
(v)
2 =

∫
d4xa2m2

Pl

(
Si − F i′

),j
(Si − F ′i ),j , (155)

where F i′ = aḞ i. Thus, only F i has time derivative and the associated conjugate momentum
exists,

Πi ≡ δ

δF ′i
L(v)

2 = 2a2m2
Pl∆

(
Si − F i′

)
. (156)

Then the Lagrangian is written as

L(v)
2 = ΠiF ′i − H(v) − SiΠi , (157)

H(v) = − 1

a2m2
Pl

Πi∆
−1Πi . (158)

Thus, equation of motion for Si, i.e. the constraint gives Πi = 0. Plugging this solution back
into the action, we find simply L(v)

2 = 0. Thus there is no relevant vector perturbation during
inflation driven by a single inflaton field.

2.4.2 Tensor perturbations

In fact, we have already found the relevant equation of motion for the tensor perturbations:
(88), and this is all! We may just close this section here and proceed to solve the scalar
and tensor perturbation equations, but nevertheless let us spend some time to see if we have
already extracted all we need for tensor perturbations without worrying about gauge issues.
From perturbing the action, we can find the tensor 2nd order action as

S
(t)
2 =

∫
d4x

a2m2
Pl

8

(
hij
′
h′ij + hij∆hij

)
. (159)

5However, this is not always the case if there exists background vector field, such as the case of vector
inflation.
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The conjugate momentum is

Πij ≡ δ

δh′ij
L(t)

2 =
a2m2

Pl

4
hij
′
, (160)

and the action is simply

S
(t)
2 =

∫
d4x

(
Πijh′ij − H(t)

)
, (161)

H(t) =
2

a2m2
Pl

ΠijΠij −
a2m2

Pl

8
hij∆hij . (162)

There is no constraint, so hij is directly relevant. As mentioned shortly after the beginning
of this section, note that after imposing the transverse and traceless conditions, there are 2
independent degrees of freedom for hij. These are usually called the 2 “polarization states” of
the gravitational waves. If we consider the Hamiltonian equation of motion from H(t)

δH(t)

δhij
= −Π′ij , (163)

we can easily obtain (88) as expected. The other Hamiltonian equation of motion, δH(t)/δΠij =
h′ij, is a trivial identity.
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3 Power spectra of perturbations

Finally we are now able to proceed to quantize the perturbations of our interest, R and hij,
and compute their power spectra. We first consider the curvature perturbation.

3.1 Quantization for the curvature perturbation

3.1.1 Asymptotic solutions

Our starting point is the quadratic action (150). By introducing

z ≡ aφ′

H
, (164)

u ≡ zR = a

(
δφ− φ′

H
ϕ

)
, (165)

after partial integrations the action becomes

S2 =

∫
d4x

1

2

[
u′

2 − (∇u)2 +
z′′

z
u2

]
. (166)

Thus, the resulting equation of motion for u is

u′′ −∆u− z′′

z
u = 0 . (167)

We can write the Fourier mode u(τ, k), which will be more convenient for the subsequent study,
as

u(τ,x) =

∫
d3k

(2π)3
eik·xu(τ, k) , (168)

the equation becomes [from now on u is the Fourier mode unless specified, u = u(τ, k)]

u′′ +

(
k2 − z′′

z

)
u = 0 . (169)

Let us consider the equation (169) more closely. Upon the identification

k2 − z′′

z
≡ ω2

k(τ) , (170)

(169) describes a harmonic oscillator with time dependent frequency ωk(τ). Let us consider the
frequency in more detail. With (164), we have the exact expression

z′′

z
= 2a2H2

(
1− ε

2
+

3

4
η − εη

4
+
η2

8
+

η̇

4H

)
≡ 1

τ 2

(
ν2 − 1

4

)
, (171)

where in the last expression ν is defined by

ν2 =
9

4
+ 3ε+

3

2
η + · · · . (172)
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Thus, for a given k, we can think of 2 exreme cases: either k2 is much more dominant than
z′′/z ∼ (aH)2 in ω2

k, or the other way round. The equation is simplified to

u′′ +

(
k2 − z′′

z

)
u −→

{
u′′ + k2u = 0 for k � aH ,

u′′ − z′′

z
u = 0 for k � aH .

(173)

For k � aH, i.e. when a mode with typical length scale λ ∼ 1/k is much smaller than the
comoving Hubble horizon 1/(aH) so that it is deep inside the horizon (“sub-horizon”), the
mode function behaves like a plane wave, u ∼ e±ikτ . Meanwhile, when the mode is far outside
the horizon, i.e. on super-horizon scales, we have a simple solution u ∝ z. This means

R =
u

z
∼ constant , (174)

viz. the comoving curvature perturbation well outside the horizon is frozen and its value is
conserved. This is another important reason why we consider R: it is conserved on very large
scales once it exits the horizon during inflation, until it enters the horizon after inflation. This is
a very nice property of R and many other perturbation variables, such as δφ, continue evolution
even on super-horizon scales.

3.1.2 Canonical quantization

Now we return to the actio (166). Considering the Minkowski metric ηµν = diag(−1, 1, 1, 1)
and the effective mass m2

eff ≡ −z′′/z, we can rewrite the action as

S2 =

∫
d4x

(
−1

2
ηµν∂µu∂νu−

1

2
m2

effu
2

)
. (175)

This form of the action is identical to that of a 1) free and 2) canonical scalar field in the
Minkowski space, thus the quantization procedure is standard. That is, we promote u and the
conjugate momentum Πu = δL/δu′ = u′ to operators û and Π̂u and imposes the canonical
commutation relation between them.

Before we proceed, one comment is in order. One may worry that the effective mass m2
eff is

intrinsically negative, and even worse, becomes indefinitely large as inflation proceeds (τ → 0).
Does this mean any pathology, since it is a badly behaving tachyon? The answer is no: the
real physical quantity of our interest is the comoving curvature perturbation R. In late time,
where m2

eff is negatively diverging, R is perfectly well behaved as (174).

1. Since u is a free field, we can expand the operator û in terms of the creation and annihila-
tion operators in the Fourier space. That is, the Fourier mode given by (168) is promoted
to the operator û(τ, k), which can be expanded in terms of the creation and annihilation
operators

û(τ, k) = akuk(τ) + a†−ku
∗
k(τ) , (176)

where the creation and annihilation operators satisfy the standard commutation relation[
ak, a

†
q

]
= (2π)3δ(3)(k− q) , (177)

otherwise zero.
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2. Now we require that the canonical conjugate variables û and Π̂u satisfy the equal time
canonical commutation relation,[

û(τ,x), Π̂u(τ,y)
]

= iδ(3)(x− y) . (178)

Using the Fourier mode (168) and the expansion (176) with the relation (177),[
û(τ,x), Π̂u(τ,y)

]
=

∫
d3k

(2π)3

d3q

(2π)3
eik·xeiq·y

{[
ak, a

†
−q

]
uk
du∗q
dτ
−
[
aq, a

†
−k

] duq
dτ

u∗k

+ [ak, aq]uk
duq
dτ

+
[
a†−k, a

†
−q

]
u∗k
du∗q
dτ

}
=

∫
d3k

(2π)3
eik·(x−y)

(
uk
du∗k
dτ
− duk

dτ
u∗k

)
, (179)

which should match the delta function. Thus, the mode function uk satisfies the normal-
ization condition

uk
du∗k
dτ
− duk

dτ
u∗k = i . (180)

3.1.3 Vacuum state

In the previous section we have set up the canonical commutation relations for the operators.
But we need to determine the mode function u(τ, k), which amounts to fix the vacuum state
|0〉 defined by

ak|0〉 = 0 for all k . (181)

In the Minkowski space, the vacuum state is such that the Hamiltonian operator of the system is
minimized. In fact in our case we have only 1 single sensible situation to do so: when k � aH,
as can be seen from (173) the frequency is time-independent. Thus we can straightly apply the
standard procedure to find the mode function solution, i.e. the vacuum state. The Lagrangian
in this limit, say τ = τ0, is approximated by

L =
1

2

[
u′

2 − (∇u)2
]
, (182)

which gives the Hamiltonian operator

Ĥ =

∫
d3x

1

2

[
Π̂2
u + (∇û)2

]
=

∫
d3k

(2π)3

{
aka−k

(
û′k

2 + k2û2
k

)
+ c.c.+

[
2a†kak + (2π)3δ(3)(0)

] (
|û′k|2 + k2|ûk|2

)}
, (183)

where for the 2nd equality we have used (176). Evaluating the expectation value of Ĥ with
respect to the vacuum state |0〉0, we find

0〈0|Ĥ|0〉0 =
1

2

∫
d3kδ(3)(0)

(
|û′k|2 + k2|ûk|2

)
. (184)
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Thus our task is to find the mode function uk that minimizes this expression. Since we already
know the solution is a plane wave, let us assume that uk takes the form

uk = ψke
iθk , (185)

with ψk and θk being real without loss of generality. Also we assume ψk is constant, since
the maximum amplitude in the Minkowski space is preserved. First, from the normalization
condition for uk (180), we find

−2iψ2
kθ
′
k = i . (186)

Then,

|û′k|2 + k2|ûk|2 = ψ′k
2 + k2ψ2

k + ψ2
kθ
′
k

2 = ψ′k
2 + k2ψ2

k +
1

4ψ2
k

, (187)

where we have used (186) for the 2nd equality. Thus, the constant ψk that minimizes the above
expression is

ψk =
1√
2k

. (188)

Then, from (186) we can determine θk as

θk = −kτ , (189)

where without loss of generality we have dropped the integration constant. Thus, the mode
function solution is

uk =
1√
2k
e−ikτ , (190)

which corresponds to the vacuum state with the frequency ωk = k. In fact, we can see that
this is exactly the solution of a massless scalar field, Ek = ωk = k. Moreover, using (190) the
Hamiltonian (183) is written as

Ĥ =

∫
d3k

(2π)3

[
a†kak +

1

2
(2π)3δ(3)(0)

]
ωk , (191)

which is precisely that of a harmonic oscillator! (barring the factors coming from the Fourier
mode convention and infinite spatial volume)

This mode function solution, or the vacuum state, however, does not remain as the solution
(or vacuum state) all the time. Remember that the mode function solution (190) is found
when the frequency is simply k. In general, as we can see from (170), the frequency is time
dependent. Thus, the Hamiltonian operator is time-dependent and in turn the mode function
solution (or the vacuum state) which minimizes the Hamiltonian is no longer the same. Let us
write the Fourier mode expansion at some later time τ1 > τ0 in terms of a new set of creation
and annihilation operators as well as new mode function,

û(τ, k) = bkvk(τ) + b†−kv
∗
k(τ) , (192)

and we can define a new vacuum state as

bk|0〉1 = 0 . (193)
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In general, the new mode function vk is related to another mode function uk via a linear
transformation, the so-called Bogoliubov transformation,

vk = αkuk + βku
∗
k . (194)

Note that (192) is also the solution of the equation (169), provided that the complex coefficient
αk and βk is normalized to

|αk|2 − |βk|2 = 1 (195)

to satisfy (180), given that uk is a solution. That is, in general the vacuum state is time-
dependent,

|0〉0 6= |0〉1 . (196)

What this tells us is: the notion of vacuum state is dependent on time and there is no unique
vacuum state throughout all the time.

This has a profound consequence. Let us consider that at τ1 > τ0 we can expand the Fourier
mode of the rescaled curvature perturbation u(τ, k) as (192), with the mode function vk being
related to the one at τ0, uk, by (194). If we evaluate the expectation value of the number

operator N
(b)
k ≡ b†kbk with respect to |0〉0, the vacuum at τ0, we find

0〈0|N (b)
k |0〉0 = 0〈0|

(
αka

†
k − βka−k

)(
α∗kak − β∗ka

†
−k

)
|0〉0 = (2π)3|βk|2δ(3)(0) , (197)

where we have used the commutation relation (177). That is, even if we have started with a
vacuum state |0〉0 which contains no particle at an initial time τ0, at a later time τ1 we find
that |0〉0 contains a non-vanishing number of b-particles. That is, we have something out of
nothing. This is how quantum fluctuations are generated in the gravitational background.

3.2 General solution for the curvature perturbation

Now we can write the general solution of the mode function: the solution satisfies the equation
(169), the normalization condition (180), and the boundary condition (190). The general
solution can be written in terms of the Bessel functions, and for later convenience we use the
Hankel functoin,

uk(τ) =
√
−τ
[
c1(k)H(1)

ν (−kτ) + c2(k)H(2)
ν (−kτ)

]
, (198)

where c1(k) and c2(k) are coefficients to be determined. Also note that writing the solution,
we have assumed ν to be constant.

To fix the coefficients, we require that on sub-horizon limit k � aH we recover the usual
Minkowski massless vacuum solution (190). This can be found by taking the argument of the
Hankel function z ≡ −kτ ≈ k/(aH) very large,

H(1)
ν (z) −→

z�1

√
2

πz
ei(z−πν/2−π/4) , (199)

with H
(2)
ν being the complex conjugate of H

(1)
ν . Thus, to match (190), we can write c1(k) and

c2(k) as

c1(k) =

√
π

2
ei(ν+1/2)π/2 , (200)

c2(k) = 0 . (201)
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One can easily chech that with these coefficients, by taking the limit −kτ � 1 we can reproduce
(190).

A particularly important and simple case is when ν = 3/2 exactly. As can be read from
(172), this corresponds to ε = 0, i.e. the perfect de Sitter case. In this case

z′′

z
= 2a2H2 , (202)

τ =
−1

aH
, (203)

and the Hankel function is given by

H
(1)
3/2(x) = −

√
2

πz

(
1 +

i

x

)
eix . (204)

Then we can find the mode function solution as

uk(τ) =
1√
2k

(
1− i

kτ

)
e−ikτ . (205)

3.3 Power spectrum of the curvature perturbation

Power spectrum is the Fourier transformation of the 2-point correlation function. In terms of
the Fourier mode, power spectrum of the comoving curvature perturbation is defined by

〈R(k)R(q)〉 ≡ (2π)3δ(3)(k + q)PR(k) . (206)

Here the average is interpreted as the vacuum expectation value with respect to the initial
vacuum. Also note that this power spectrum PR(k) is not dimensionless but has the mass
dimension −3. It is custumary to define the dimensionless power spectrum PR(k) by

PR(k) ≡ k3

2π2
PR(k) . (207)

Using u = zR and (176), and matching the definition (206), we can find

PR(k) =
k3

2π2

∣∣∣uk
z

∣∣∣2 . (208)

Here we note that R(k) = R(τ, k) as is obvious from the equation of motion for R derived in
the previous section. Thus the natural question is: when do we evaluate the power spectrum?
In fact the answer is very obvious. We have seen in (174) that R becomes constant on the
super-horizon scales k � aH, i.e. −kτ → 0, and maintains the value until the moment of
horizon entry. Thus it is natural to evaluate the power spectrum at that moment. In this limit,
the Hankel function is approximated to

H(1)
ν (z) −→

z�1

√
2

π
e−iπ/22ν−3/2 Γ(ν)

Γ(3/2)
z−ν . (209)
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Thus, the power spectrum is written as

PR(k) = lim
−kτ→0

k3

2π2

∣∣∣uk
z

∣∣∣2
= lim
−kτ→0

22ν−3

[
Γ(ν)

Γ(3/2)

]2

(1 + ε)1−2ν

(
H

2π

)2(
H

φ̇

)2(
k

aH

)3−2ν

. (210)

With ν = 3/2 + ε+ η/2 + · · · , we may expand the coefficients to find

PR(k) = lim
−kτ→0

[1 + 2(α− 1)ε+ αη]

(
H

2π

)2(
H

φ̇

)2(
k

aH

)3−2ν

, (211)

where
α ≡ 2− log 2− γ ≈ 0.729637 . (212)

Practically, we can evaluate the RHS of (211) at any time around horizon crossing. For
definiteness, we evaluate it at horizon crossing k = aH, then

PR(k) = [1 + 2(α− 1)ε+ αη]

(
H

2π

)2(
H

φ̇

)2
∣∣∣∣∣
k=aH

. (213)

An important property of PR(k) is how it scales with k. Assuming a simple power-law form,
it has the form

PR ∝ knR−1 , (214)

where nR is called the spectral index of the power spectrum. It is straightly read from (211),
as

nR − 1 ≡ d logPR
d log k

= 3− 2ν = −2ε− η|k=aH . (215)

The amplitude of the power spectrum and spectral index are very well constrained by most
recent observations on the CMB as PR ∼ 2.5× 10−9 and nR ∼ 0.96.

3.4 Tensor perturbations

Now we consider the tensor perturbations. Before we proceed more rigorous discussions, we
can quickly see the tensor perturbations also become conserved on super-horizon scales: if we
neglect the spatial gradient in (88), we immediately find that one of the solution is a constant.
The other solution can be found, by regarding ḣij as a variable, that ḣij ∝ a−3. Thus,

hij ∼
{

constant ,∫
a−3dt ∼

∫
e−3Htdt .

(216)

The 2nd solution is exponentially decaying, hence the constant mode quickly becomes dominant.
In other words, on the super-horizon scales, the amplitude of the tensor perturbation remains
constant. Thus, once it is primordially produced, it maintains more or less the same magnitude
throughout the history of the universe.

Now we study the tensor perturbations more closely. Our starting point is the tensor
quardatic action (159). But as we did for the curvature perturbation, we can rescale hij to
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obtain the action for canonically normalized fields. For this, in the Fourier mode we introduce
the polarization tensor eij(k, λ) with λ denoting 2 different polarization states in such a way
that

hij(τ,x) =

∫
d3k

(2π)3
eik·x

2∑
λ=1

ψλ(τ, k)eij(k, λ) , (217)

where eij satisfies the following properties:

eij = eji , (218)

eii = 0 , (219)

kieij = 0 , (220)

e∗ij(λ)eij(λ′) = 2δλλ′ , (221)

eij(−k) = e∗ij(k) , (222)

which represent the symmetry between the spatial indices, traceless and transverseness, the
existence of 2 independent polarizations and the realness of hij. Then, the action becomes

S
(t)
2 =

∫
dτ
a2m2

Pl

4

∫
d3k

(2π)3

∑
λ

(
ψ′λ

2 − k2ψ2
λ

)
. (223)

Further, by introducing

vλ ≡
amPl√

2
ψλ , (224)

we have

S
(t)
2 =

∑
λ

∫
dτ

d3k

(2π)3

1

2

(
v′λ

2 − k2v2
λ +

a′′

a
v2
λ

)
. (225)

Notice that the only 2 differences from the case of R are 1) there are 2 copies of the identical
action of a canonically normalized scalar field vλ for each polarization state, and 2) the effective
mass of vλ contains not z = aφ′/H but a′′/a, which is much simpler than that of the curvature
perturbation. The following equation of motion for each λ is

v′′λ +

(
k2 − a′′

a

)
vλ = 0 . (226)

Now we can follow virtually identical steps. Thus we do not show all the explicit calculational
details except that because the effective mass contains not z′′/z but a′′/a, the index of the
Hankel function solution becomes different. More explicitly, we can write

a′′

a
= 2a2H2

(
1− ε

2

)
≡ 1

τ 2

(
µ2 − 1

4

)
, (227)

where as before the 1st equality is exact, and we have defined

µ2 =
9

4
+ 3ε+ · · · . (228)
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Thus the properly normalized solution for vλ to match the Bunch-Davies vacuum state is

vλ(τ) =

√
π

2
ei(µ+1/2)π/2

√
−τH(1)

µ (−kτ) . (229)

The power spectrum is defined by the sum of each polarization mode,∑
λ

〈ψλ(k)ψλ(q)〉 ≡ (2π)3δ(3)(k + q)PT (k) , (230)

but for the dimensionless power spectrum PT (k) it is conventional to define it without the
factor 1/2, i.e.

PT (k) ≡ k2

π2
PT (k) =

k2

π2

∑
λ

∣∣∣∣∣
√

2vλ
amPl

∣∣∣∣∣
2

. (231)

From (229), we can easily find

lim
−kτ→0

∣∣∣∣∣
√

2vλ
amPl

∣∣∣∣∣
2

=
1

k3

H2

m2
Pl

(
k

aH

)3−2µ

22µ−3

[
Γ(µ)

Γ(3/2)

]2

. (232)

Thus, the dimensionless power spectrum becomes6

PT (k) = lim
−kτ→0

[1 + 2(α− 1)ε]
8

m2
Pl

(
H

2π

)2(
k

aH

)3−2µ

= [1 + 2(α− 1)ε]
8

m2
Pl

(
H

2π

)2
∣∣∣∣∣
k=aH

. (237)

This power spectrum is assumed to have a power-law form as

PT ∝ knT , (238)

6In many literatures, the tensor perturbation is introduced in the metric with the factor 2, i.e. writing the
tensor contributions only,

ds2 = −dt2 + a2 (δij + 2hij) dx
idxj . (233)

In this case, the tensor quadratic action has of course an overall factor of not 1/8 but 1/2,

S
(t)
2 =

∫
d4x

a2m2
Pl

2

(
hij
′
h′ij + hij∆hij

)
. (234)

To compensate this factor in the subsequent process of quantization in terms of the canonically normalized
scalar field, the polarization tensor is normalized as

e∗ij(λ)eij(λ′) = δλλ′ , (235)

and vλ is defined by
vλ ≡ amPlψλ . (236)

Then after all we end up with the identical quadratic action for vλ, (225). The final power spectrum of hij is
now multiplied by the factor 1/4 correspondingly. However, the spectral index is the same.
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where note that we conventionally do not include −1 here. So the corresponding spectral index
is given by

nT ≡
d logPT
d log k

= 3− 2µ = −2ε|k=aH . (239)

Before we proceed, let us take a look at (237) to see why the primordial tensor perturbations
are important. As we can see, the power spectrum of the primordial tensor perturbations is
directly proportional to H2, which is by the Friedmann equation (21) directly proportional to
the energy density. This is not surprising, since the tensor perturbations are after all gravity
which only cares the total energy in the universe, irrespective of the model-dependent detailed
dynamics during inflation. Thus, by detecting the power spectrum of the tensor perturbations
we can directly determine the energy scale during inflation!

Another important quantity related to the tensor perturbations is the so-called tensor-to-
scalar ratio. As the name stands, it is the ratio of the tensor power spectrum to the scalar one
and denoted by r,

r ≡ PT
PR

. (240)

And using (213) and (237), to leading order in the slow-roll paramters we find

r = 16ε = −8nT . (241)

This relation is valid for any single field inflation model with canonical kinetic term, so it is
called a consistency relation. Thus if we are lucky enough to test this relation, that amounts
to testing all canonical single field inflation models at one shot. There is another profound
meaning. If we write (241) in terms of the derivative with respect to the number of e-folds N
using dN = Hdt, which follows from (46), we find

r =
8

m2
Pl

(
dφ

dN

)2

. (242)

If we limit our interest to the regime relevant for the large scale CMB observations, which spans
N1 < N < N2, we can recast this equation as

∆φ

mPl

=

∫ N2

N1

dN

√
r

8
, (243)

where ∆φ is the field range φ excurses during ∆N ≡ N2 − N1 = O(1). As we can see from
the spectral indices for both scalar and tensor perturbations, during slow-roll inflation r does
not change appreciably for a small interval of ∆N . Thus, we may pull r out of the integral to
obtain

∆φ

mPl

∼
( r

0.01

)1/2

. (244)

That is, if we ever detect a large tensor-to-scalar ratio r & 0.01, that means the field excursion is
super-Planckian. This seemingly trivial relation in fact raises an important question in inflation
model building as we will see in the next section.
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3.5 Simple example and beyond

3.5.1 Quadratic potential case

Finally, let us consider a simple example where the canonical inflaton field has the simple
quadratic potential

V (φ) =
1

2
m2φ2 . (245)

The derivatives of the potential are simply read V ′ = m2φ and V ′′ = m2. The first quantity to
compute is the number of e-folds N , that is, to check whether we can have 60 e-folds or not.
Using the slow-roll approximation, from (63)

N =
φ2
i − φ2

f

4m2
Pl

= 60 . (246)

The final value φf can be found by requiring ε(φf ) = 1, i.e. at φf inflation stops. This gives

φf =
√

2mPl . (247)

This is very small in (246), thus ignoring this contribution for simplicity we find the initial
value φi to have 60 e-folds as

φi =
√

240mPl ∼ 15mPl . (248)

Now we proceed to compute the amplitude of the scalar power spectrum and the spectral
index. In (213), for simplicity we neglect the slow-roll terms in the coefficients. Then, using
(61)

PR =
V 3

12π2m6
PlV

′2 =
m2φ4

i

96π2m6
Pl

∼
(

10
m

mPl

)2

. (249)

Thus, we can constrain the effective mass of the inflaton as

m ∼ 5× 10−6mPl ∼ 1013GeV . (250)

The spectral index can be similarly found using (62) as

nR = 1− 8

(
mPl

φi

)2

≈ 0.96 . (251)

Note that using (246) we can find a simple relation

nR = 1− 2

N
. (252)

This simple relation, i.e. nR − 1 ∝ 1/N is common to the inflation model with power-law
potential. For the tensor perturbations we can find

PT =
2V

3π2m4
Pl

=
1

3π2

(
m

mPl

)2(
φi
mPl

)2

∼ 2× 10−10 , (253)

nT = −4
m2

Pl

φ2
i

= − 1

N
∼ −0.017 , (254)

r =
8

N
∼ 0.1 . (255)
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3.5.2 Digression: effective theory

The simple harmonic oscillator potential we have considered in the previous section surprisingly
satisfy almost all the observed constraints deduced from the most recent CMB observations.
This class of model, where during inflation φ spans a large field range compared to mPl, is called
“large field model”. From (244), such a model typically gives a large tensor-to-scalar ratio as
we have checked in the previous section. In other words, to be consistent with the current
observations on the CMB, we must ensure that over a field excursion range greater than mPl,
both the monomial potential and the canonical kinetic sector describe the dynamics well. But
is it true?

For this, let us return to a very basic wisdom. In reality, the universe spans a huge range
of various scales: we can think of, for example, the size of an atom and that of a galaxy, or the
mass of an electron and that of the sun. Thus, it seems that to describe a physical phenomenon
we must take into account all the physics relevant over all scales, from (say) quantum mechanics
to (say) general relativity. But in fact, when we do a table-top experiment, we hardly resort
to any of them but just classical mechanics works fine. Why is it so? This is because the
effects of the scales too much different from relevant one are suppressed by powers of the ratio
of scales in the problem. Thus we need not worry too much about quantum mechanical effects
(∼ 1010m) when we perform a table-top experiment (∼ 100 − 101m). This separation of scales
is more formally elaborated in quantum field theory as effective field theory.

We can obtain an effective field theory in 2 ways. If the mother theory is known that
contains (for simplicity) both a light degree of freedom φ relevant for low-energy physics and
a heavy one Φ whose mass is so larger than the energy scale of our interest that its effects are
not important, formally we can integrate out Φ by performing a path integral. This results in
an effective action for φ solely,

eiSeff(φ) =

∫
[DΦ]eiS(φ,Φ) . (256)

Typically, this gives rise to non-local, higher dimensional terms since the propagators of Φ
intervene those of φ in such a way that, for example,

φ
(
−�+M2

)−1
φ =

φ

M2

(
1 +

�
M2

+ · · ·
)
φ , (257)

where M is the mass scale of Φ which satisfies (regime of our interest)�M . mPl. But in many
cases we cannot expect to have such a luxury of knowing the mother theory. Rather, usually we
only know an effective Lagrangian at a low-energy with a cutoff scale Λ which satisfies (regime of
our interest)� Λ . mPl, and parametrize our ignorance based on symmetry principles. That is,
with a number of symmetries (Lorentz, gauge, global...) that survive at low-energies, we write
down all the possible operators consistent with those symmetries. In doing so we necessarily
take into account the effects of the integrated out heavy physics in a model independent way.
In this case, we also face higher dimensional terms. That is,

Leff = Lφ +
∑
i

ci
Oi

Mni−4

(
or Λ−(ni−4)

)
, (258)
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with Oi being an operator of dimension ni > 4. These operators include not only φ itself but
also its derivatives and cross-terms with φ, e.g.

φn , (∂µφ)n , (∂µφ)nφm , (259)

and so on. Thus, from the effective theory point of view, we expect many sub-Planckian
structures that may well interrupt otherwise successful large-field inflation with super-Planckian
field excursions.

A good example of how these higher dimensional operators affect the predictions from
naive Lagrangian is the so-called “η-problem”. In its original context, this tells us that when
constructing an inflation model in supergravity, because of the overall exponential factor for
the Kähler potential the inflaton mass receives O(H2) correction thus spoiling the slow-roll
condition m2

PlV
′′/V ∼ O(1) (this parameter is called η here). However, the problem is not only

the corrections to the potential. Typically, the terms allowed in effective field theory spoil the
otherwise smooth structure (both potential and kinetic sectors) of the theory, hence interrupting
successful long enough period of inflation. This is a key challenge not easily surmountable in
realistic inflation model building in the context of particle physics.

Thus, we usually need a non-trivial mechanism to protect and/or prevent certain classes of
operators. For example, if we impose an exact shift symmetry, i.e. the Lagrangian is invariant
under a constant shift of φ,

φ→ φ+ constant , (260)

all non-derivative terms are forbidden by this symmetry, i.e. there is no potential term. Usually
an exact symmetry is weakly broken by loop effects, i.e. potential is induced by radiative effects.
Thus in this case small mass of φ can be explained.
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4 Non-Gaussianity

In the previous sections we have concentrated on the linear perturbations and the power spectra.
As we have seen, the quadratic action for scalar and tensor perturbations are (after some
manipulations) essentially that of a quantum harmonic oscillator. Thus we can resort to the
conventional wisdom of quantum physics to solve the system, and the solutions are free ones –
thus following Gaussian properties. This is because, during inflation, the expansion is so fast
that any higher order (i.e. beyond quadratic order) interactions that lead to deviations from
Gaussianity are diluted to a very small level. Indeed, current observations on the CMB indicate
that the properties of the primordial perturbations are very close to Gaussian. That is, power
spectra are all we need: any odd-order correlation function disappears, and even-order ones
can be written in terms of the product of power spectra.

In other words, if we can ever probe any deviation from Gaussianity, i.e. non-Gaussianity,
we have a very powerful probe to study the inflationary dynamics since we can investigate
interactions beyond free field limit. Moreover, as power spectra did, we can use the non-trivial
higher order correlation function, especially the first one – 3-point correlation function, or “bis-
pectrum” – to distinguish different models of inflation. Thanks to the rapid developments
in observational instruments and techniques, we may well hope to constrain severely the de-
gree of non-Gaussianity from various cosmological observations, including the CMB and the
distribution pattern of galaxies on large scales.

In this section, we study how to specify and quantify primordial non-Gaussianity. First we
quickly sketch the so-called in-in formalism which we will use to compute quantum mechanical
non-Gaussianity. The existence of interaction terms demands the vacuum state different from
the one of free field theory, which is taken into account when we apply the in-in formalism.
Then, we concentrate on the so-called squeezed configuration of the bispectrum. In this limit
we can extract another powerful probe to constrain all classes of single field inflation models
universally.

4.1 Bispectrum and non-Gaussianity

In the statistical point of view, a quantity with Gaussian distribution is completely described
by its power spectrum. That is, all the correlation function with odd power vanish, and the
connected part of the correlation functions vanish. The “connected part” means the part of a
correlation function which cannot be expressed in terms of the correlation functions with lower
order7: let us consider a zero-mean random field δ(t,x), i.e. 〈δ〉 = 0. Then, up to 3rd order

7At this point, it would be illustrative to remind of the Wick’s theorem. There are many different description
of the Wick’s theorem, e.g. in quantum field theory, but the most appropriate form for the current purpose
would be this:

The correlation of order m =
∑
l

product of the connected (unreducible)
correlation of order l ≤ m .

For example,
〈δ1δ2δ3〉full = 〈δ1〉c〈δ2〉c〈δ3〉c + 〈δ1〉c〈δ2δ3〉c + (cyclic) + 〈δ1δ2δ3〉c . (261)
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correlation functions, we find [with δ(t,x1) ≡ δ1]

〈δ1δ2〉full = 〈δ1〉〈δ2〉+ 〈δ1δ2〉c = 〈δ1δ2〉c , (262)

〈δ1δ2δ3〉full = 〈δ1〉〈δ2δ3〉+ 〈δ2〉〈δ1δ3〉+ 〈δ3〉〈δ1δ2〉+ 〈δ1δ2δ3〉c = 〈δ1δ2δ3〉c . (263)

That is, the 2nd and 3rd order connected correlation functions coincide with the full correlation
functions themselves. Meanwhile, for 4th order,

〈δ1δ2δ3δ4〉 = 〈δ1δ2〉〈δ3δ4〉+ 〈δ1δ3〉〈δ2δ4〉+ 〈δ1δ4〉〈δ2δ3〉+ 〈δ1δ2δ3δ4〉c + terms with 〈δi〉 . (264)

For this to be completely described by 2nd order correlation functions, the connected 4th order
correlation function 〈δ1δ2δ3δ4〉c should disappear. More generally, 〈δ1 · · · δN〉c = 0 for N > 2.

Hence, non-vanishing higher order connected correlation function indicates that the corre-
sponding quantity is non-Gaussian distributed. Especially, the 3-point function, or its Fourier
transform, the bispectrum, represents the lowest order statistics with which we are able to
distinguish non-Gaussian from Gaussian perturbations.

4.2 Prescriptions of in-in formalism

Higher order correlation functions are generated when the scalar field has some interaction with
itself or other fields. This amounts to saying that the action contains higher order contributions
beyond the quadratic order. In this respect, the total Hamiltonian H can be written as a
combination of the free Hamiltonian H0 and the interaction Hamiltonian Hint,

H = H0 +Hint . (265)

To find the interaction Hamiltonian usually requires that only dynamical degrees of freedom
remain in the action. Once the action is given, we can construct the Hamiltonian by defining
conjugate momenta, and separating out the quadratic from the higher order parts, i.e.

H0 ⊃{quadratic terms in terms of the perturbative degrees of freedom} , (266)

Hint ⊃{higher order terms} . (267)

Now, the crucial point is that the system is not free but contains interactions, and hence any
(vacuum) expectation values should be taken with respect to the interaction vacuum state |Ω〉,
i.e. the actual vacuum state of the theory, not the free vacuum state |0〉 defined by ak|0〉 = 0
for all k.

For this description, we resort to the interaction picture. In quantum mechanics, the inter-
action picture (or Dirac picture) is an intermediate between the Schrödinger picture and the
Heisenberg picture. Whereas in the other two pictures either the state vector or the operators
carry time dependence, in the interaction picture both carry part of the time dependence of
observables. The purpose of the interaction picture is to shunt all the time dependence due to
H0 onto the operators, leaving only Hint affecting the time-dependence of the state vectors: re-
viving for the moment the Planck constant ~, the time evolution of state vectors and operators
are given by

i~
d

dt
|ψint(t)〉 =Hint(t)|ψint(t)〉 , (268)

i~
d

dt
Âint(t) =

[
Âint(t), H0

]
, (269)
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respectively.

Now, we denote by
〈
Ô(t)

〉
the expectation value evaluated at a time t of a time dependent

operator

Ô(t) =
(
e
−i

∫ t
tin

H0(t′)dt′
)†
Ô
(
e
−i

∫ t
tin

H0(t′′)dt′′
)
, (270)

where tin is some early “in” time when the interaction is turned on. This expectation value is
taken with respect to the vacuum state at that time |Ω(t)〉, which has evolved from an “in”
state |in〉 according to

|Ω(t)〉 = e
−i

∫ t
tin

Hint(t
′)dt′|in〉 ≡ Uint(t, tin)|in〉 . (271)

Then, we can write

〈
Ô(t)

〉
=

〈
Ω(t)

∣∣∣Ô(t)
∣∣∣Ω(t)

〉
〈Ω(t) | Ω(t)〉

=

〈
in
∣∣∣U †int(t, tin)Ô(t)Uint(t, tin)

∣∣∣ in〉〈
in
∣∣∣U †int(t, tin)Uint(t, tin)

∣∣∣ in〉 . (272)

To specify the “initial” conditions in the context of quantum field theory, we usually first find
the eigenstates |n〉 of the free Hamiltonian H0 and stipulate that the system begins in one or
some combination of |n〉: if the system begins in the quantum mechanical vacuum, this amounts
to putting our system in the vacuum state of H0, which we denote by |0〉, at the initial time tin,
in the sense that initially the interaction is turned off. Hence, Assuming that |0〉 is properly
normalized, we obtain 〈

Ô(t)
〉

=
〈

0
∣∣∣U †int(t, tin)Ô(t)Uint(t, tin)

∣∣∣ 0〉 . (273)

One further technical manipulation is the contour of the time integral. To explicitly this, we
first consider the complete set of the full interacting theory |n〉, which is the eigenstates of H,
with |n = 0〉 = |Ω〉 being the interacting vacuum state. To obtain |Ω〉, we evolve |0〉 for some
time from the initial time tin, and use the eigenstates of the theory such that

e−iH(t−tin) = e−iE0(t−tin)|Ω〉〈Ω|0〉+
∑
n≥1

e−iEn(t−tin)|n〉〈n|0〉 . (274)

If we slightly distort the contour to include small imaginary part, tin → −∞(1−iδ), we see that
there appears an exponential suppression factor exp(+iE0tin) = exp [−iE0(1− iδ)∞] ∼ e−∞.
Thus all terms from the sum over n ≥ 1 become exponentially small compared to the leading
term involving |Ω〉. It thus follows that |Ω〉, the vacuum of the full theory at a time t, is given
by

|Ω〉 = lim
tin→−∞(1−iδ)

e−iH(t−tin)

e−iE0(t−t0)〈Ω|0〉
|0〉 . (275)

Therefore, going back to (272) and using (270) and (271), we obtain

〈
Ô(t)

〉
= lim

tin→−∞(1−iδ)

〈
0

∣∣∣∣(e−i ∫ ttin H(t′)dt′
)†
Ô
(
e
−i

∫ t
tin

H(t′′)dt′′
)∣∣∣∣ 0〉

〈0 | 0〉

= lim
tin→−∞(1−iδ)

〈
0
∣∣∣U †int(t, tin)Ô(t)Uint(t, tin)

∣∣∣ 0〉 . (276)
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Note that this is the same as (273), with the prescription on the time integral contour being
specified. In (276) which is being evaluated in the complex time plane, from right to left, time
starts from infinite past with slightly positive imaginary part, or shortly−∞+, to some arbitrary
time t when the expectation value is evaluated, then back to −∞−. This time contour, which is
shown in Figure 6, forms a closed time path. This is why the in-in formalism is sometimes called
closed time path formalism. It is also very important to note that the time forward contour
does not coincide with the time backward contour: the vacuum specification has broken the
time symmetry of the forward and backward time integrals.

Figure 6: Closed time path in “in-in” formalism.

Now, let us consider Hint as a small perturbation to the free Hamiltonian H0. Expanding
the exponential in (276) up to 2nd order in terms of Hint, we obtain8

〈
Ô(t)

〉
=

〈
0

∣∣∣∣∣∣
[

1− i
∫ t

tin

Hint(t
′)dt′ +

1

2

(
−i
∫ t

tin

Hint(t
′)dt′

)2
]†
Ô(t)

×

[
1− i

∫ t

tin

Hint(t
′)dt′ +

1

2

(
−i
∫ t

tin

Hint(t
′′)dt′′

)2
]∣∣∣∣∣ 0
〉

=

〈
0

∣∣∣∣∣
[

1 +

(
−i
∫ t

tin

Hint(t
′)dt′

)†
+

1

2

(
−
∫ t

tin

Hint(t1)dt1

∫ t

tin

Hint(t2)dt2

)†]
Ô(t)

×
[
1 +

(
−i
∫ t

tin

Hint(t
′)dt′

)
+

1

2

(
−
∫ t

tin

Hint(t1)dt1

∫ t

tin

Hint(t2)dt2

)]∣∣∣∣ 0〉
=

〈
0

∣∣∣∣Ô(t) + i

{∫ t

tin

[
Hint(t

′)Ô(t)− Ô(t)Hint(t
′)
]
dt′
}

− 1

2

{∫ t

tin

dt2

∫ t

tin

dt1

[
Hint(t2)Hint(t1)Ô(t)− 2Hint(t2)Ô(t)Hint(t1)

+Ô(t)Hint(t2)Hint(t1)
]}∣∣∣ 0〉

=
〈

0
∣∣∣Ô(t)

∣∣∣ 0〉+ i

∫ t

tin

dt1

〈
0
∣∣∣[Hint(t

′), Ô(t)
]∣∣∣ 0〉

+ i2
∫ t

tin

dt2

∫ t2

tin

dt1

〈
0
∣∣∣[Hint(t1),

[
Hint(t2), Ô(t)

]]∣∣∣ 0〉 , (277)

where we have used for the last equality, the commutator identity

AAB − 2ABA+BAA = [A, [A,B]] , (278)

8Here, we omit for simplicity limtin→−∞+ but tin is evaluated in this limit after all.
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and to reduce the double integral inside the curly brackets, the fact that for any symmetric,
holomorphic function, f(t1, t2) = f(t2, t1),∫ b

a

dt1

∫ b

a

dt2f(t1, t2) = 2

∫ b

a

dt1

∫ t1

a

dt2f(t1, t2) . (279)

This is because f(t1, t2), for the current case f(t1, t2) = Hint(t1)Hint(t2), is symmetric under
the exchange of its arguments, the integral over the square region on the LHS is twice the RHS
integral over the lower shaded triangle, where t2 < t1. In this way, we can show that (276) is
formally consistent with the infinite sum of the nested commutators,〈
Ô(t)

〉
=
∞∑
n=0

in
∫ t

tin

dtn

∫ tn

tin

dtn−1 · · ·
∫ t2

tin

dt1

〈
0
∣∣∣[Hint(t1),

[
Hint(t2), · · ·

[
Hint(tn), Ô(t)

]
· · ·
]]∣∣∣ 0〉 .
(280)

4.3 Bispectrum of the curvature perturbation

4.3.1 Cubic interaction and bispectrum

Now we return to our main interest, the 3-point correlation function of the comoving curvature
perturbation R. According to the prescription of the in-in formalism, the operator whose
expectation value we want to compute is the 3 copies of the curvature perturbation, i.e.

Ô(t) = R(k1, t)R(k2, t)R(k3, t) . (281)

Thus, to leading order in Hint, we can define the bispectrum BR(k1, k2, k3) as

〈R(k1, t)R(k2, t)R(k3, t)〉 ≡ (2π)3δ(3)(k1 + k2 + k3)BR(k1, k2, k3)

= i

∫ t

tin

dt′ 〈0 |[Hint(t
′),R(k1, t)R(k2, t)R(k3, t)]| 0〉 . (282)

Thus, to have non-zero bispectrum, we need to find at least 3rd order Hamiltonian, H3 = −L3:
it contains 3 copies R, thus we can connect every R to another, leaving no disconnected piece.
The computation of the 3rd order action is essentially the same as what we have done to obtain
the 2nd order action, but only more lengthy and tedious. For more detail, see e.g. Maldacena
(2003) where the quantum calculation is presented for the first time. The result is

S3 =

∫
d4xa3m2

Pl

[
−εR(∇R)2

a2
+ 3εṘ2R− ε

H
Ṙ3 +

1

2a4

{(
3R− Ṙ

H

)[
ψ,ijψ,ij − (∆ψ)2

]
− 4R,iψ,i∆ψ

}]
,

(283)
where ψ is the solution of the 0i component of the scalar metric perturbation B already pre-
sented in (133),

ψ ≡ aB = −Ṙ
H

+ a2ε∆−1Ṙ︸ ︷︷ ︸
≡χ

. (284)

This form of the action is not bad, but one may suspect that while S2 is overall suppressed
by ε, S3 seems to have unsuppressed contributions and thus the bispectrum may be even larger
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than the power spectrum. In fact, one may use δφ instead of R (remember that when we
reduce the quadratic Lagrangian, from CA = 0 we could eliminate Πϕ in favour of δφ) where S3

is obviously suppressed by ε2. We can explicitly check this by performing a number of partial
integrations, and the result is

S3 =

∫
d4x

[
a3m2

Pl

{
ε2Ṙ2R+ ε2R(∇R)2

a2
− 2εṘR

,iχ,i
a2

+
ε

2
η̇ṘR2 +

ε

2a4
R,iχ,i∆χ+

1

4a4
∆R(∇χ)2

}
+ 2

δL

δR

∣∣∣∣
1

{
η

4
R2 +

1

H
ṘR+

1

4a2H2

[
−(∇R)2 + ∆−1

(
R,iR,j

)
,ij

]
+

1

2a2H

[
R,iχ,i −∆−1

(
R,iχ,j

)
,ij

]}]
, (285)

where δL/δR|1 denotes the linear equation of motion for R derived from S2,

δL

δR

∣∣∣∣
1

= a3εm2
Pl

[
1

a3ε

d

dt

(
a3εṘ

)
− ∆

a2
R
]
. (286)

Clearly, in (285) barring the terms multiplied by δL/δR|1, which we now denote by f(R), all
terms are suppressed by ε2. Then, how to deal with f(R)? Fortunately, at this order we can
eliminate f(R) by a simple field redefinition. If we redefine R non-linearly [remember that
f(R) = O(R2)] as

R → R+ f(R) , (287)

the quadratic action (151) becomes, keeping up to 3rd order in R,

S2 →
∫
d4xa3εm2

Pl

[
Ṙ2 + 2Ṙḟ − (∇R)2 + 2(∇R)(∇f)

a2

]
=

∫
d4xa3εm2

Pl

[
Ṙ2 − (∇R)2

a2

]
+

∫
d4x

[
2a3εm2

PlṘḟ − 2aεm2
Pl(∇R)(∇f)

]
︸ ︷︷ ︸

=
∫
d4x[−2 δL

δR |1f(R)]

, (288)

thus considering the whole action up to 3rd order S2 + S3, f(R) terms precisely cancel each
other.

The calculation of the full bispectrum is now straightforward, a bit tedious though. One
thing we should not forget is that, unlike in quantum field theory in static background, the
redefined field R + f(R) is different from the original one R. This distinction is important
since the background is time evolving. Thus, at the last stage we have to compensate this
redefinition by including the contributions coming from this redefinition. Schematically, if we
write

R → R+ f(R) = R+ λR2 , (289)

where λ denotes the quadratic order operators that appear in f(R), the bispectrum we need
to calculate is [with R1 ≡ R(k1) etc]

〈R1R2R3〉 → 〈R1R2R3〉+ λ [〈R1R2〉 〈R1R3〉+ 2 perm] , (290)

where the 1st term comes from H3 while the 2nd contribution from the field redefinition.
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4.3.2 Consistency relation

As we can expect, the bispectrum in general exhibits very rich configurations, since the conser-
vation of the 3 momenta allows infinitely many shapes of the triangle the 3 momenta can form.
Thus, usually we think of convenient and representative “templates”, i.e. certain configura-
tions of the triangle. A convenient and physically very important one is the so-called squeezed
configuration, which corresponds to the local-type non-Gaussianity.

Let us assume that R = R(x) is a local function and we can expand the fully non-linear
curvature perturbation R locally as9

R = R(1) +
3

5
fNL

(
R(1)

)2
+ · · · , (291)

where R(1) is the linear, Gaussian part of the curvature perturbation which gives the (leading)
power spectrum PR, 〈

R(1)
k R

(1)
q

〉
= (2π)3δ(3)(k + q)PR(k) , (292)

and the 2nd order expansion coefficient, “non-linear parameter”, fNL is a constant. Moving to
the Fourier space, we have

Rk = R(1)
k +

3

5
fNL

∫
d3q1d

3q2

(2π)3
δ(3)(k− q1 − q2)R(1)

q1
R(1)
q2︸ ︷︷ ︸

≡R(2)
k

+ · · · , (293)

the bispectrum is immediately computed as

〈R1R2R3〉 =
〈
R(1)

1 R
(1)
2 R

(1)
3

〉
+
〈
R(1)

1 R
(1)
2 R

(2)
3

〉
+ 2 perm + · · · , (294)

where the 1st term obviously vanishes, and the 1st non-zero contribution comes from the term
that contain one R(2). Explicitly,

〈R1R2R3〉 = (2π)3δ(3)(k1 + k2 + k3)
6

5
fNL [PR(k1)PR(k2) + 2 perm] . (295)

It is very important to note that this form of the bispectrum is obtained by assuming local
expansion of the curvature perturbation. But nevertheless this “local form” of the bispectrum
provides an important and useful parametrization as follows. A particularly interesting limit is
obtained if we take 1 of the 3 momenta, (say) k3, very smaller than the other 2, (say) k1 ≈ k2.
In this case, the shape of the triangle is highly squeezed in k3, so it is called “squeezed”
configuration. Then, we can pull 2PR(k1)PR(k3) from the squared brackets to have

PR(k1)PR(k2) + 2 perm = 2PR(k1)PR(k3)

[
1 +

PR(k1)

2PR(k3)

]
. (296)

9The coefficient 3/5 in front of fNL is added because originally fNL is defined in terms of the Newtonian
potential Φ. It is related to the comoving curvature perturbation R by Φ = 3R/5 on large scales, for which the
corresponding modes entere the horizon during matter dominated era.
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Since PR ∼ k−3PR ∝ knR−4, the last term in the square brackets above behaves as PR(k1)/PR(k3) ∝
(k3/k1)4−nR → 0, thus

〈R1R2R3〉 −→
k3→0

(2π)3δ(3)(k1 + k2 + k3)
12

5
fNLPR(k1)PR(k3) . (297)

Matching this expression with the definition of the bispectrum (282), we can find the local
non-linear parameter in the squeezed configuration as

fNL =
5

12
lim
k3→0

BR(k1, k2, k3)

PR(k1)PR(k3)
. (298)

Physically, in the squeezed configuration, the mode corresponding to small k has much longer
wavelength than the other 2. In other words, the long wavelength mode is already outside the
horizon while the other 2 remain sub-horizon. Thus, essentially the long wavelength mode can
be seen for the small scale modes very smooth, slowly varying background. This statement
is very generic independent of the detail, so one may expect a universal relation irrespective
of the detail of inflationary dynamics in the squeezed bispectrum. Indeed there exists such a
relation valid universally for all single field inflation models.

It is more convenient to work in the configuration space rather than the Fourier space. The
correlation functions are related in the standard manner, e.g.

〈R(x1)R(x2)〉 =

∫
d3k1

(2π)3

d3k2

(2π)3
eik1·x1eik2·x2 〈R(k1)R(k2)〉

=

∫
d3k

(2π)3
eik·(x1−x2)PR(k) , (299)

and so on. Now, the correlation of 3 R’s with 2 small scale modes (denoted by a subscript S)
being under the influence of a long scale one (denoted by a subscript L) can be written as

〈RS(x1)RS(x2)RL(x3)〉 ≈ 〈〈RS(x1)RS(x2)〉LRL(x3)〉 , (300)

where the subscript L for the 2-point correlation of the small scale modes means under the
existence of the long wavelength modes. For this, we can absorb the long wavelength mode RL

into the metric by redefine the spatial coordinates as

x̃i ≡ eRLxi , (301)

so that now the coordinates themselves include the influence of the long wavelength mode.
Thus,

〈RS(x1)RS(x2)〉L = 〈RS(x̃1)RS(x̃2)〉 ≈ 〈RS(x1 +RLx1)RS(x2 +RLx2)〉L . (302)

To proceed further, for simplicity without loss of generality let us set x2 = 0. Then, expanding
the above equation gives〈[
RS(x1) +

∂RS(x1)

∂xi
RLx

i + · · ·
]
RS(x2 = 0)

〉
≈
〈
RS(x1)RS(x2) +RL(x1)xi1

∂

∂xi1
RS(x1)RS(x2) + · · ·

〉
.

(303)
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Thus, the 3-point correlation function becomes

〈〈RS(x1)RS(x2)〉LRL(x3)〉 ≈ 〈RS(x1)RS(x2)〉 〈RL(x3)〉

+ 〈RL(x1)RL(x3)〉xi1
∂

∂xi1
〈RS(x1)RS(x2)〉 , (304)

where the 1st term on the RHS vanishes. We now see there are power spectra of short and long
wavelength modes separately.

It’s now almost done. Using the Fourier modes, the above equation becomes∫
d3kL
(2π)3

eikL·(x1−x3)PR(kL)

∫
d3kS
(2π)3

PR(kS)xi1
∂

∂xi1
eikS ·(x1−x2)︸ ︷︷ ︸

=kiS
∂

∂ki
S

eikS ·(x1−x2)

=

∫
d3kL
(2π)3

eikL·(x1−x3)PR(kL)

∫
d3kS
(2π)3

PR(kS)kiS
∂

∂kiS
eikS ·(x1−x2)︸ ︷︷ ︸

f ′= ∂

∂ki
S

eikS ·(x1−x2) , g=kiSPR(kS)

=

∫
d3kL
(2π)3

d3kS
(2π)3

eikL·(x1−x3)eikS ·(x1−x2)PR(kL)
∂

∂kiS

[
−kiSPR(kS)

]
. (305)

Let us consider the derivative inside the integral a bit more closely. Since there are 3 spatial
directions, the derivative acting on kiS gives just a number 3. Meanwhile, since PR(kS) is only de-

pendent on kS =
√

(kiS)
2
, ∂PR(kS)/∂kiS = (∂kS/∂k

i
S)[∂PR(kS)/∂kS] = (kiS/kS)[∂PR(kS)/∂kS].

Thus,

∂

∂kiS

[
kiSPR(kS)

]
= 3PR(kS)+kS

∂PR(kS)

∂kS
= PR(kS)

d log [k3
SPR(kS)]

d log kS
= (nR−1)PR(kS) . (306)

Thus, we finally reach∫
d3kL
(2π)3

d3kS
(2π)3

eikL·(x1−x3)eikS ·(x1−x2)(1− nR)PR(kL)PR(kS) . (307)

Finally, making use of the identification (remember that the orientation of a 3-dimensional
vector is arbitrary so its sign does not matter)

kL = −k3 , (308)

kS = −k2 = +k1 , (309)

we have kL + kS = −k2 − k3 = +k1. Further, replacing e−ikS ·x2 with

e−ikS ·x2 =

∫
d3k2e

ik2·x2δ(3)(k2+kS) =

∫
d3k2e

ik2·x2δ(3)(k1+k2) ≈
∫

d3k2

(2π)3
eik2·x2(2π)3δ(3)(k1+k2+k3) ,

(310)
we finally obtain the desired expression∫

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
eik1·x1eik2·x2eik3·x3(2π)3δ(3)(k1 + k2 + k3)(1− nR)PR(k1)PR(k3) . (311)
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Thus, we can identify the bispectrum in the squeezed limit as

BR(k1, k2, k3) −→
k3→0

(1− nR)PR(k1)PR(k3) , (312)

or, from (298) the local non-linear parameter is given by

fNL =
5

12
(1− nR) . (313)

Since nR ≈ 0.96 by current observations, for any single field inflation we have

fNL ∼ O(ε)� 1 . (314)

Had we observed large (say, fNL ∼ 10) fNL, we would have been able to rule out all single field
inflation model. But fortunately or unfortunately, the most recent observations made by the
Planck satellite reported

fNL = 2.7± 5.8 , (315)

so fNL � 1, i.e. single field inflation, is still mostly consistent with observations.
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