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The k-p approximation
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II.1 : The ab initio density functional theory

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

The many-particle hamiltonian...

% We do not live in a non-interacting world !..
The hamiltonian of the N-electron system actually reads :

Hy =T+V 4V,
. h2 N
where T = ——ZAH is the kinetic energy of the electrons
0 i=1

N Nat 7 g2
V =>"v(r;) is their potential energy v(r):—Z‘i‘
= i i

N 2
Ve=>> € isthe Coulomb interaction.

ri—rj‘

i-1 j<i

# The ground-state wavefunction Wy(ry, r, ..., ry) is not a single-Slater determinant !
The ground-state density reads :

n(r)= NJ.d3r2 ..._"d3rN [Po(r, Pty )
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The Hohenberg-Kohn theorem
# Obviously,

Ce:] V(r) = ¥, (1, 1,y ) = 0(r)

1 | [Phys. Rev. B 136, B864 (1964)]

# There is a one to one correspondance between the one-body potential v(r) and the

ground-state density n(r).

As a consequence, the ground-state energy :

E = (o|Hy|¥o) = Egs [V]=Egs[n]

can either be considered as a functional of the one-body potential v(r) or of the

ground-state density n(r).
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The variational principle

# Egg[n] can be split as follows :

Ce:] EGS[n]:<\{JO“:|N‘\{}0>

=W, [T +V +V,.|¥,)
=W [T +V,|¥,) +_[d *rv(r)n(r)
LOF T Teel T0)
Fin

# Let us now introduce :

Eln,v]= (¥ [T +V,o| W) + [ d°rv(r)n(r)
Fl

as a functional of n for a given one-body potential v.

57

E[n,v] has minimum E[n,v] = Egg[n,] when n(r) is the ground-state density n(r)

corresponding to v(r) [otherwise there would exist a P, with energy lower
than the ground-state energy !!].
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The Hohenberg-Kohn theorem : Proof

» Proof ad absurdum. Let us assume that :
# the potential v(r) with ground-state wavefunction Wy(ry, r,, ..., ry),
and :
# the potential v’(r) with ground-state wavefunction W’ (ry, 1, ..., Iy)
give rise to the same density n(r).

' Let:
E =(W,|Hy|¥,)and E' = (¥ |H [ '¥s)
be the corresponding ground-state energies.

» First, Wo(ry, 1y, ..., Fy) @and Wy’ (ry, 1y, ..., ry) must be different (unless v-v’ is a
constant) because they satisfy different Schrodinger equations.
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The Hohenberg-Kohn theorem : Proof

» Proof ad absurdum. Let us assume that :
@ the potential v(r) with ground-state wavefunction Wy(ry, ry, ..., Iy),
and :
@ the potential v’(r) with ground-state wavefunction Wy’ (ry, ry, ..., Iy)
give rise to the same density n(r).

'Let:
E:<\P0“:|N‘\P0>and E':<\II(S‘H;\I‘\P(;>

be the corresponding ground-state energies.

» Then (variational principle on the wavefunction),

E' = (Wo Hy[Wo) < (Wo Hi|Wo) = (Wo Hy| o) + (N =V |¥y)
E'<E +jd3r[v’(r)—v(r)]n(r)

E'+E<E+E"!
Likewise,
1 ’ 1 ’ ’ 1 ’ ’ ’ 7 "! ’ Absurd
E = (o Hy| o) < (W |Hy[Ws) = (¥o |Hy | o)+ (¥oV -V ;)
E< E’+j'd3r[v(r)—v’(r)]n(r)
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The HK theorem applied to non-interacting electrons

» The Hohenberg-Kohn theorem also holds for non-interacting electrons in a one-
body potential v(r) :

E,=(¥5 | |w5)
=(W5 [T +V,|¥5)
= <‘I/0'°' ‘f ‘{J§>+J'd3rv5(r)n(r)

TInl

» Variational principle : E,[n,v,] is minimum when n(r) is the GS density for v,(r).

&S[n,vs]zoz 8T [n]

) a(r) +v,(r) vr

» Although this equation looks very complicated, we know its solution !

2
72h—Arqoi (r)+v(re(r)=ep(r) [&; twofold spin degenerate]
mU

n(r>=g\¢.(rf

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

The Kohn-Sham equations (1)

» Back to the interacting electrons problem...
E :<\P0‘HN‘L{'0>
=W [T +V +V, | ¥,)
= (W [T +V,| ¥y ) + J'dsrv(r)n(r)
F(n]

E can further be split as follows :

E=T, [n]+jd3rv(r)n(r)+ %J'd 3rJ'd ' n‘(:hg’) +E[n]

Hectrosta tic energy
(Hartree energy)

T, [n]is the kinetic energy of a non - interacting electron gas with density n(r)

where E_[]- F[n]—TS[n]—%.[d%jdsr'%

» E,.[n] is the so-called « exchange-correlation » energy, that accounts for :
® The Coulomb interactions beyond the mean-field (Hartree) approximation.
® The increase of kinetic energy due to these interactions (T-Ty).

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007
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The Kohn-Sham equations (II)
=Ts[n]+jdsw( J.d rJ'd3 r +Exc[n]

_w—/
Blectrosta tic energy
Ce:] (Hartree energy)

» Variational principle : E[n,v] is minimum when n(r) is the GS density for v(r) .

EhV]_, J‘d 5[N] or
on(r) on(r)
Hartree potential "Exchange —correlation
v (r) potential” vy (r

5E[n,v]707 o7 [n]

an(r)  an(r) + Vs (1), where vies () = v(r) + v, (1) + v, (r)

This last equation is the same as the one found for non-interacting electrons in a
one-body potential v,g(r) !!
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The Kohn-Sham equations (III)
+Exc[n]

=Ts[n]+J'd3rv( jd rJ.d3 ph
%,—/
Bectrosta tic energy
Cej (Hartree energy)

» The ground-state density n(r) satisfies :

= %Argai (r)+v(r)eg (r)+ v, (r)e,(r)+v (e (r)=se(r)  [e twofold spin degenerate]

N
= z‘(ﬂi (r)2
i=1
where :

is the Hartree potential

r)=[d*r

v (r)= &[] is the exchange - correlation potential
XC &(r)

» Note : The Hartree and exchange-correlation potentials depend on the density !!
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The local density approximation (1)

E=T,[n]+ Id *rv(r)n(r)+ %J.d 3rJ'd 3r’% +E,[n]

Blectrosta tic energy
(Hartree energy)

» We know everything, except E, [n] !!
This is an unknown and incredibly complex functional !!

# The simplest, yet most widely useed approximation is the so-called « local
density approximation (LDA) ».

It assumes that the electrons behave locally as a homogeneous electron gas :

Ecln]=[d*m(r)e,.(n(r)

where ¢,(n) is the exchange-correlation energy per particle of a homogeneous
electron gas with density n. The LDA exchange-correlation potential is :

de,. (n(r))

0= = (o) i) 22

an(r)
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¥ ¢,.(n) has been tabulated using « Quantum Monte Carlo » methods.
VoLums 45, NumBER 7 PHYSICAL REVIEW LETTERS 18 AugusT 1980
Ground State of the Electron Gas by a Stochastic Method
D. M. Ceperley
National Resource for Computation in Chemistry, Lawrvence Berkeley Laboratory, Bevkeley, California 94720
and
B. J. Alder
Lawrence Livermore Laboratory, University of California, Livermore, California 94550
(Received 16 April 1980)
An exact i of the equation for charged bosons and
fermions has been used to caleulate the correlation energies, to locate the transitions
to their respective crystal phases at zero temperature within 10%, and to establish the
stability at densities of a fluid of elect
TABLE L. The ground-state energy of the charged Fermi and Bose
systems. The density parameter 7, is the Wigner-sphere radius in units
of Bohr radii. The energies are rydbergs and the digits in parentheses
represent the error bar in the last decimal place. The four phases are
paramagnetic or unpolarized Fermi fluid (PMF); the ferromagnetic or
polarized Fermi fluid (FMF); the Bose fluid (BF); and the Bose crystal
with a bee lattice.
7 Epur e Ege Fbee
1.0 1.174(1)
2.0 0.0041(4) 0.2517(6) -0.4531(1)
5.0 -0.1512(1) -0.1214(2) -0.216 63(6)
10.0 ~0.106 75(5) ~0.1013(1) -0.12150(3)
20.0 ~0.063 29(3) -0.062 51(3) -0.066 66(2)
50.0 -0.02884(1) -0.028 78(2) -0.02927(1) -0.02876(1)
100.0 ~0.015321(5) ~0.015340(5) -0.015427(4) ~0.015339(3)
130.0 -0.012 072(4) -0.012037(2)
200.0 ~0.008 007(3) -0.008 035(1)
66
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Beyond the local density approximation
# The local density approximation only works (in principle) for almost homogeneous

electron systems. Yet it is accurate enough (in practice) for many solids and
molecules !!

» Beyond the LDA :

® The « Generalized Gradient Approximation (GGA) » :

E.[n= .fd *rn(r)e, (n(r), vn(r),..)

Still a (semi-)local functional...

® Non-local functionals (« Exact exchange » and beyond) :
More accurate, but also much more expensive... Still being explored...

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 67
What can be computed with DFT ?
» Ground-state energy of solids and molecules.
Ground-state density.
# Derivatives of the ground-state energies :
® Forces F,=-Vg E =
. ' o°E
® Dynamical matrices Dy y =———
0X0X;
] :
Polarizabilities (P = a.E), piezoelectric constants, etc...
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 68
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Example : GeMn structure (1)

@ GeMn is a « diluted magnetic semi-conductor ».
Itis ferromagnetic at T < 400 K = Applications for « spintronic ».

% Mn forms nanocolumns when inserted in a Ge matrix.

@ What is the structure of
these nanocolumns ?

Ab initio simulation of a
periodic 64 atoms box :

Wavefunctions expanded
in plane waves

Thibaut DEVILLERS, Matthieu JAMET, CEA Grenoble

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 69

Example : GeMn structure (II)

% Formation energies (FE) :

Substitutional Split-vacancy Tetrahedral interstitial
Mng
Mn,
FE=0eV FE=-0.2eV FE=+15¢eV
T T T T T T T
of b M - EXAFS @ None of these defects
S mv reproduce the distances &
< P
£ E ; coodlhatlons t
| # 1 Mnin a 64-site box = 1.6 %
S much lower than exp. conc.
2|
s - Increase the number of Mn
o = H . H . s in the box !
18 2 2.2 2.4 2.6 2.8 3 32 3.4
Distance (A)
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 70
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Example : GeMn structure (lII)

# of Mn 1 2 3

[Mn] 1.6% | 31% | 47%

OEO OeV

» FE does not
decrease with [Mn] !!

» What about clusters ?

Formation Energy (FE)

-0.2eV

Wl nSVe e

Formation Energy (eV/Mn) as a function of [Mn] for isolated defects

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 71

Example : GeMn structure (1V)

Vacancy cluster

/

Interstitial cluster

- .
/

@ ¢
Mny s, / ’ o\
MnsgV I\
FE=0.4eV
FE=0.3eV
5 d> +d> <do+de> ) o
—— EXP. — EXAFS # Distances and coordinations
R :EZ\} well reproduced by the
5 3¢ — vacancy cluster.
g .l [ » These tetrahedra are the
ol %—1% building blocks of MnsGe; &
. | ‘ . _ ‘ MngGe,; (known to be
1.8 2 2.2 2.4 2.6 2.8 3 32 3.4 stable).
Distance {A)
Structure of Mn-rich GeMn nanocolumns : A combined EXAFS and ab initio calculations study. 72

E. Arras et al., submitted to PRL.
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Example : GeMn structure (V)

Y|
&0 /
I G/B’?\
[ ®&—
I\
@ \
\\\
Possible chessboard-like structure
of GeMn columns ?
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 73

Example : Doping silicon nanowires (I)

» Doping of small (110)-oriented, unpassivated Si nanowires :

S T T

X. Blase, ... Wire a Wire b Wire c
Surface segregation energies
Si(001)-2x1 Wire a Wire b Wire c
B -0.7eV -0.03 eV -0.14 eV -0.99 eV
P -1.08 eV -0.98 eV -1.05 eV -1.10 eV
] !
Surface segregation and backscattering in doped silicon nanowires, 74

M.V. Fernandez-Serra, Ch. Adessi and X. Blase, Phys. Rev. Lett. 96, 166805 (2006).
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Example : Doping silicon nanowires (ll)

# In perfectly passivated nanowires : No clear tendency for surface diffusion.

Ce:) >10'2 cm-2 dangling bond (P,) defects at Si/SiO, interface

Segregation energy

at P, defect

10'8-10%° cm-2 dopants in bulk (Nyq (P:Si)=3x10% cm-3)

-0.99 eV

-1.62 eV

e

Surface segregation and backscattering in doped silicon nanowires, 75
M.V. Fernandez-Serra, Ch. Adessi and X. Blase, Phys. Rev. Lett. 96, 166805 (2006).

DFT in crystals

» A crystal is a periodic structure characterized by its and
ay, 8,, ;. Example in 2D :

€SP O

TR

— .(2‘(2‘ unitcel: (@) ©

o, <o (2‘ .
Lattice vectors ; 2
(@) (@) (@)

N 4

a

» The potential v(r) is periodic in a crystal :

v

z* z* z"

: v(r +nga, +n,a, +n,a,)

YanestE

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007 76
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Bloch’s theorem

» Bloch’s theorem : The one-particle wavefunctions ¢(r) in a periodic potential v(r)
can be split as follows :

ik-r

(/)(r) = Pk (r) =€ Uy

(r) where u,, (r+na, +n,a, +nsa,)=u,/(r) ¥(n,n,,n,)ez?

k is a (wave)vector and n is an integer. The one-particle energies &, can thus be
sorted into « bands » (same n, different k) :

\

Bandga
Kily < gap

—

hZ

2m,

A Enk
n=3 Empty or « » bands
> kIl x
n=2
1 Occupied or « » bands
n=

AP (I’)+ V(r)(pnk (I’) = EnkPrk (r)

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007 77

The reciprocal lattice (I)

# Let us introduce the following vectors :

27
b, =—a, rna
1T 2 Nd3

2r
b,==""a, na
3 Q 1 2

# Then,

and, in general,

a;-b; =275

2
a1'b1:6”a1'(az Aag)=

b, :267[a3/\a1 where Q=a,-(a, ra;)=a,-(a;r8,)=2a;-(a; ra,)

2r

—;a a,)=2
31'(32/\33) q ( 2 A\ 3) T

2
a,-b, :éral-(a3 Aa,)=0 because u A valways L touandv

27
a,-b, :Eal-(alAaz):O

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007 78
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The reciprocal lattice (Il)
# The reciprocal lattice is the lattice of G vectors defined by :
=9, G =mb, +m,b, +myb, ¥(m;,m,,m,)eZ?

Then for any R =n,a, + n,a,+ Na,, (Ny, Ny, Ng) €23,

G-R = 27(mn, +myn, +myn;) since a; -b; =275
U

eiG~R =il

Real lattice: Reciprocal lattice:

S

Examples in 2D : - h, a,-b; =275

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 79

The first Brillouin zone (1)

# The is in reciprocal space.
Let us indeed consider a one-particle wavefunction ¢, (r) with energy &, and a
lattice vector G =0 :

hZ
= om Ae0nc 1)+ V() () = £ (1)
0

We may as well write :

pulr)=e e o, ()] e ori(r)

Then for any R = n,a, + n,a,+ ngag, (N, Ny, Ny) €73,

G(r+R)=e "Ry (r+R)=e"®R|e "y, (r)|=(r) since €= =1

As a consequence, ¢, (r) and g, are also one-particle wavefunction and energy for
k=k+G.

The band structure has the periodicity of the reciprocal lattice !

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 80
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The first Brillouin zone (Il)

» We thus only need to compute the band structure in an elementary unit cell around

k =0. We define the

€S9

Example in 2D :

Reciprocal
lattice points

(FBZ) as the set of k's that is closer to
G =0 than to any other reciprocal lattice point.

1. Brillonin

(8] zone

The reciprocal space can indeed be covered with FBZ-like tiles translated along b,

and b,.

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Crystal structure

# Most usual semiconductors crystallize in the cubic

structure.

Itis a face-centered cubic (FCC)
lattice with a two atom unit cell :
—one at (0,0,0).
— the other at a(1,1,1)/4.

In the structure, each
FCC sublattice is occupied by a
different atom (e.g. Ga/As, In/P).

In the structure, the two
sublattices are occupied by the
same atom (e.g. Si, Ge, C).

» Alloys can also be synthetized, e.g. Iny sGa, ,AS.

One FCC sublattice is occupied by the In/Ga atoms (80% In+20% Ga ~ randomly

distributed), the other by the As atoms.

81
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Reciprocal lattice

a
« X
=20 b, = 27 (11)
= 5( 11) Ty L The reciprocal of a
a 27, lattice with side a is a body-centered

a,= E(]”O’l) =1b,=2(1,12) cubic lattice with side 2m/a.
2a The is the above

a, = %(1,1,0) b, = l(lylj) truncated octahedron.
a

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 83

Direct vs indirect bandgap materials

bflas @
H
S £
) <
3 £
S s
2 2
= =
w
5
I‘ a X UK I "'r"‘
k vector k vector
» GaAs : material (the valence band maximum and conduction
band minimum lie at the same k point).
»Si: material (the valence band maximum and conduction
band minima lie at different k points).
Bulk Si can not emit light !
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 84
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Why bulk Si can not emit light...

A photon with wavelength A has :

— Energy E = hv=hc/A

— Momentum k = 2w/A

# Optical transitions must preserve :

] thv=hc/A=E,
A is in the pm range for typical bandgap energies E, ~ eV.
] T Ak =271/

But A <<a = Ak << 2n/a.

Optical transitions are quasi-vertical in reciprocal space !!

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 85

The DFT band structure (1)

# Kohn-Sham equations :

—%A,(pi (r)+v(r)e: (r)+v, (N (r)+ v, (N (r) = £o:(r) & twofold spin degenerate]
0

n(r)ﬁw

In principle, the Kohn-Sham energies have no physical meaning...
Let us have a look anyway at the LDA band structure of silicon...

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 86
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The DFT band structure (I1)

15
, # The LDA band structure of silicon
aw Si Py is rather good, but one
10 }\\ LDA A~ of the most important feature :
e - S . The latter
P is ~0.5 eV too small.
s
% 5 e N o
s F-zse A s *® 19953 # The DFT is a ground-state
o - m h |
: S theory !
2 o 22
| —R ps . .
R . O, » What are single particle
g 4 itaor Rl wavefunctions and energies in an
a8 " interacting system ?
experime ntal
error bar - ”
A0 F "'~“}, ,»’/ .
-15
L A r A X
Wave vector
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Interacting systems : « Quasi-electrons » (1)

# Let us add an electron to an otherwise neutral solid...

lon cores

# The electron plus its Coulomb hole is called a «

Coulomb hole

This electron repells nearby
valence electrons, thus leaving
partially « naked » ion cores
around him.

The electron is thus « clothed »
by a cloud of positive charges
(also known as a Coulomb hole)
that screens its interactions with
the other particles. This Coulomb
hole follows the electron
travelling in the solid.

».

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007 88
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Interacting systems : « Quasi-electrons » (ll)

» Let us add an electron to an otherwise neutral solid...

lon cores Coulomb hole

# Far enough from the quasi-electron at r, V(r,r')= 7%_
& r—ri
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 89
Interacting systems : « Quasi-holes » (I)
# Let us remove an electron from an otherwise neutral solid...
This leaves a positive charge
(hole) in the solid that gets
surrounded by a cloud of
@ @ Q @ @ valence electrons.
. This cloud of electrons is
n dragged by the hole as it
-4 moves in the solid.
lon cores
# The hole plus its cloud of electrons is called a « ».
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 90

45



€SP

Interacting systems : « Quasi-holes » (ll)

» Let us remove an electron from an otherwise neutral solid...

10
Ow

lon cores

# Far enough from the quasi-hole at r, V(r,r)=+

+€

_ &
elr-r|

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 91
The quasiparticle equation (1)
# Can we still describe the dynamics of quasi-electrons and quasi-holes with one-
particle wavefunctions ?
® i.e., looking on the side :
Can we find one-particle energies E, and one-particle wavefunctions ¢,(r)
such that :
— |@,(r)P is the probability to find the electron at r.
— Ey(N)+E, is the energy of the (N+1)-electron system ?
@ or, looking on the side :
Can we find one-particle energies E, and one-particle wavefunctions ¢,(r)
such that :
— |g,(r)? is the probability to find the hole at r.
— Ey(N)-E, is the energy of the (N-1)-electron system ?
» The answer is yes, but with conditions.
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 92
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The quasiparticle equation (1)

» The quasiparticle wavefunctions and energies can be shown to satisfy the so-
called quasiparticle equation :

A0 v, )+ v (o r)+ [ (i E ) (7)= Ev, (1)

2m,
where :
® v(r) is the « external » (ionic) potential.

® vh J d3r p PN is the average potential created by the ground-state
" r\ electron density (also known as the Hartree potential).

®X (r,r;E)isthe « ». It describes how valence electrons
dynamically act back onto the additional electron/hole at r.

» The self-energy is an incredibly complex operator. Approximations can be found
within many-body perturbation theory (e.g., the « GW » method).

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 93

The quasiparticle equation ()

» The quasiparticle equation :

)V )+ 4 (O () [0S, (171, o ()= Eng 1)

2m,

is a Schrodinger-like equation whose effective potential =, (r, r’;£,) is :

° (depends on both r and r’).
The range of the self-energy is of the order of the Coulomb hole size (~ 2 A) in
solids. But see later discussion in nanostructures !

] .
As a consequence, the quasiparticle « hamiltonian » is not hermitian and the
quasiparticle energies are complex numbers.

What does that mean ??

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 94
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The quasiparticle lifetime

# Quasiparticles have a T, ~ UL, :

Ce:] o.(rt) =0, (,—)e*%E"t _ {% (r)e’%g"‘ j|e—r,.t

The quasiparticles decay into other many-body excitations... They propagate as
single particles only on « short » time scales t <<t,,.

» How long is 1, ??

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 95

Back to the quasiparticle lifetime...

# Quasipatrticle lifetime in bulk Si, as calculated with the so-called GW method :

A5 100

e
&

(fs)

B. Arnaud et al.

| T P
-sl0 -5 0 5 10 15 20 25

Re[£T] (eV)

# The quasiparticle lifetime diverges at the conduction and valence band edges !

There are well defined, long-lived quasiparticles around the gap.
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The quasiparticle band structure of a solid

# Bloch theorem still applies. In a solid, the quasiparticle wavefunctions and energies
can be labelled with a wavevector k and a band index n :

’ tu Iy % ,
J4° 5 = | Quasi-electron bands
Gahs \/\ /_\’ « »
g 5 X, T
ok r, Bandgap I
) Las T. -
> = ’ [y
2 -2fle X, / 4
3 - x,<
2
o ] -
u - Quasi-hole bands
s o « »
-10f,, et
Y \Ez/ \
L A Iy X UK T
k vector
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An effective single-particle hamiltonian

# Most of the interesting physics takes place around the gap...
Let us now forget about :
Cej # finite quasiparticle lifetimes...
® self-energy non-locality...
and assume that we can find a local potential v(r) that yields the same
quasiparticle wavefunctions and energies as the self-energy operator Z,.(r, r’;E,) at
least around the gap :

- iArgon (r)+v(r)p, (r)+v, (N, (r)+ Id 2 (rrE e, (r) = E,,(r)

2m,
U
A OO ()=,
U
1)1 ()=,

where Veg(r) = v(r) + Vi (r) + Vegi(r).
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II.2 : The semi-empirical tight-binding method

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Introduction

_7’72Ar1//(r)+veff (N (r)=ewl(r)

2m,
# Write the wavefunctions as (LCAO) :

N Norh

p(r)=> c.e.(r-R;)

i=l a=1

where ¢(r — R;) is an orbital of kind « centered on atom i with position R;. For
example,

—a=1¢1s R R
—a=2¢2s
—a=3c2p, - -
—a=4o2p,

—a=52p,

Rl R3

# Which orbitals to choose ?

99
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Which orbitals to choose ? (1)

Si atom Bulk Si
N E N E
4s Mostly 3s, 3p
antibonding
3d
3p Bandgap -
Mostly 3s, 3p -+
3s bonding
2p 2s, 2p bands
2s
1s band
1s sp® bonding
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Which orbitals to choose ? (11)

Si

| '“J. 3s “ °

h 8 8 0

# Possible choices for Si :

®sp’
less for the conduction bands, especially at high energy.

: quite accurate for the valence bands, somewhat

® spid® : accurate valence bands, pretty good conduction
bands.
® spds” : accurate valence and conduction bands.
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Application to nanocrystals and quantum dots (1)

¢S _ZLI;A,I//(I’Hveﬁ (F(r) = ey(r), v (r) =

# Write the wavefunctions as (LCAO) :
N Norp
=22 Cufalr-Ry)
i=1 a=1

where ¢(r — R;) is an orbital of type « centered on atom i with position R;.

Hence :
N Nory
h“// chlah‘¢a(r R :gzzcia‘(oa(r_Ri»
i=1l a=1 i=1l a=1
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Application to nanocrystals and quantum dots (11)

hly) :i’fqah‘%(r_ Ri) =8inuz”‘:cia\¢a(r— R/))

i=l a=1 i=l a=1

Cej # We then project onto p4r - R)) :
———— N

(oplr =R iv) =33 e ole R, o e -R.)

E \
=3

or}

~e3 30 (0, =R YRy 1)
<¢/,(r R)‘h"/’ i: Hﬂa(Rj,Ri):g%%cmsﬂa(Rj,Ri)v(ﬂ,j)

where :

H(w(R \R;)=(p,(r—R; g, (r-R;)) [Hamiltonian matrix element]
( ) (p.(r-R,) ‘q)ﬂ(r R )> [Overlap matrix element]

H.(Ri, Ry is an « on-site » energy while H_ 4R;, R)) is a « hopping » matrix
element.
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Application to nanocrystals and quantum dots (l11)

h"//>:jzlnaz:ciah‘wa(r_Ri)>=€gnoz:cia‘¢a(r_Ri)>

Ce:] » We then project onto [pr — R)) :

(ol =R )Jiv) =35, o, i, R

~e33eulo,e-R Yol -R) (5.
(oale =R ) =330 (R R )= 250 R, R (6. )

We last define the following n x n matrices (n =N x ny) :

IR

H with elements H ;i) = H(R;R;)
S with elements S, = SR, R))

and the vector ¢ with coordinates c;,. We thus end up with :

HE = 58
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Further simplifications...

» What we need :

H.(Ri, Ry is an « on-site » energy while H_ 4R;, R)) is a « hopping » matrix
element.

Hos(RiR;)= (p.(r-R, ]h\(pﬂ(r -R; )> [Hamiltoni an matrix element]

S.5(Ri.R;)=(p,(r-R;)|¢,(r-R;)) [Overlap matrix element]

» We can use symmetries and make further approximations to reduce the number of
matrix elements to compute :

@ Finite range tight-binding models.
# Orthogonal/non-orthogonal tight-binding models.
@ Twol/three centers tight-binding models.
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The use of symmetries (1)

Haﬂ(Rier)=<¢’a(r—Ri]h‘%(r_Rj»
Saﬁ(Riij):<¢a(r—Ri) ‘/’ﬁ(r—Ri)>

o

[}
[}
.
.
—

(o (e - .

# These hamiltonian and overlap matrix elements are equal by symmetry...
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The use of symmetries (I1)

° ..(; X ° °
° ° ° ° ° {H“ﬁ(Ri’Ri):<%(r_RiXh¢’B(r_Rj)>
SRR )= (0, (r=R ), (r-R, )

° ° l“\‘- .. °

» These hamiltonian and overlap matrix elements are opposite by symmetry...
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The use of symmetries (I1l)

Haﬂ(Ri’Rj)=<¢)a(r_Ri]h‘wﬂ(r_Rj»

\ . ° {
3 . S,s(Ri.R;)=(p,(r-R;)

Pp (" -R; )>
[ [ [ [ [
(<] (<] (<] (<] (<]
# These hamiltonian and overlap matrix elements are zero by symmetry...
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Finite range tight-binding models

# Atomic orbitals decay exponentially far enough from the nucleus :

Electron probability

{Haﬂ(Ri'RJ):<¢a(r_RiXh¢ﬁ(r_Ri)>
Saﬂ(Ri'Rj)z<¢a(r_Ri)‘¢ﬂ(r_Rj)>

10a,
r

As a consequence, the hamiltonian and overlap matrix elements decrease very
fast with |Ri -R |

Assume zero hamiltonian and overlap matrix elements beyond first, second
or third nearest neighbors.
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Orthogonal tight-binding models (1)

» The atomic orbitals may be split into a radial and an angular part :

,(r)= &f@ x Y. (0.0)

Radial part  spherical harmonic
s,p.d...
Different orbitals on the same atom are orthogonal (because their ang. parts are) :

S4(RiR)=(0,(r—R)p,(r—R,)) =5,

» The R,'s of the free atoms are neither the only possible nor the best choice for the
radial parts. In particular, we may try to tune the R(r)’s so as to minimize the
overlaps between neighboring orbitals while retaining their overall free atom-like
shapes, thus achieving :

Saﬁ(Riij)=<¢’a(r_Ri)¢p(r_Rj)>z§ij5aﬁ [§=i]
» We are back to a simpler standard eigenvalue problem :

He =gt [Orthogonal tight-binding model]

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 1

Orthogonal tight-binding models (lI)

» Beware : negligible overlap matrix elements does not mean that neighboring
orbitals do not interpenetrate !!

- +/ -

I -
I

Sa/,(Ri,Rj):@J[,(rfRi)‘(p/,(rij» ~0

On the contrary, making the orbitals quasi-orthogonal add wiggles that usually
increase the range of the model.

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 112

56



Two and three center tight-binding models

¥ Let:

"’ \
h=—2—A, +Ve (r) and v (r) =Y v, (r-R,)

eSS 2m, &

Then,
Hop(RiR; )=, (r=R)hig,(r-R )
=<¢a(r—Ri)—27::]0Ar +kZ:vk(r—Rk) (pﬂ(l’—Rj)>
:<¢a(l’—Ri)—;:]0Ar +vi(r—Ri)+vj(r—Rj) ¢ﬂ(r—Rj)>
+<¢’a(r_R|)kzN_:_\/k(r_Rk) (/’/3(r_Rj)>
¥ Keep :

® Partorallk=iand k=j terms : « Three center tight-binding model ».
# Only the (most important) k=i or k=jterms: « Two center tight-binding
model ».

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 113

Two center tight-binding models (1)

X .
where | =

P (r—Ry)=lp,(r—R,)+Ip, (r—R,)+np,,(r—R,) W
1 2

Haﬂ(Rl’R2)=< (r- R1*%Ar +V1(r—R1)+Vz(r_Rz#px(r—Rz)>

=1(s(r =Ry Jhy,|p, (r=R,))+m(s(r =R, Jh,|p, (r=R,))+n..
0by symmetry
HaB(Rl’RZ): |<5(r - Rl]hﬂ‘pa‘(r_ R2)> = IVspo'qu - Rz‘)
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Two center tight-binding models (II)

[ 2
m=y-u e = R,-R,
niz.ulz 12 ‘R1—R2‘ f./' ‘
=2-Up ] Up,(I,m,n)

I=x-uy,

<5(r_ R1Xh12‘ P, (r- R2)> = IVspo-qu - RZD
<S(r_ Rl)hz‘ py(r_ Rz)> = mVspcqul - RZD
<S(r_ R1Xh12‘ p,(r—- R2)> = Vspo'qu - RZD

Only depends on‘RrRz‘!

# Advantages of the two-center approximation :
® The tight-binding matrix elements only depend on a few “Slater-Koster

parameters” (e.g. Vg,,).
® Explicit angular dependence (through the cosine directors I, m and n).

® Complete separation between the angular and interatomic distance
dependences.

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Application to crystalline solids (1)

# In a crystalline solid, any atomic position R; can be split in two parts :
R4 = Jja, +ka, +la, is alattice vector [(jk,1)e %]
R, = ﬁjkl +d, where <d, is the position of one of the n, atoms of the

reference unit cell at R,

Example : The
structure is a face-centered
cubic (FCC) lattice with a two atom unit
a cell(n,=2):
—one at d, =(0,0,0) [e.g. Ga].

N Norp

bcia(oa(r_Ri)E Z zzcjklpawa(r_ﬁjkl _dp)

(jk1)ez® p=La=1

nor

Hence, w(r)= Z

[N

a=.

—the other at d, = (1,1,1) a/4 [e.g. As].

115
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Application to crystalline solids (I1)

zimcm(pa r R E z Zc:irbcjklma(pa( -d )

i a=1 (] k |)Ez p=la=1
# Bloch’s theorem :

w(r)=w, (r)=e%"u, (r) where u,(r+ua, +va, +wa,)=u,(r) V(u,v,w)ezZ?

As a consequence,

y/nk(r +R, ) ik (”wa)unk(r + RUVW) =gk Rum [e""runk (r)]: e Rumy, (1) V(u,v,w)e Z°

However,

N Norp

l//nk(r+§uvw)= Z zzcjklpa ”k)%(HR l’ijkl_dp)

(jk,1)ez® p=la=1

N Norp

= Z ZZCJ“P(Z nk)wa(r R(J u)(k-v)(1-w) -d )

(jk,1)ez® p=la=1

Ne Norp

Z ZZC(J+u)k+v)(I+w pa(nk)(”a(r R dp)

( Nez3 p=Lla-1
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Application to crystalline solids (l11)

Yk (I’+ ﬁ ) Z Zcihc (j+u)(k+v)( I+w)pa(nk)¢a (r R )

N Norp

:eik-ﬁuvw z zzcjklpa nk)(ﬂa(r R dp)

(jk1)ez® p=la=1
Since the LCAO expansion must be unique,

C(j+u)(k+v 1+w)p (nk): eikRuvajklpar(ﬂk)
Compe (NK) =Ry (k)= Fom 0ol e ng gy e Pl (i)

Finally,

N Norp )

Vo r z ch]klpa (nk)e, (r R

(;kl)ez3 =1a=1

Ne Norp oS
|k~(R +d ) 5
=zsza(nk) Ze Jkl p%z(r_RjH_dp)
p=la=1 (j.k,))ez®
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 118
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Application to crystalline solids (1V)

¥ Let:
=———A, +V () hly,) =enlw,
2m0 r eff nk nk| 7 nk

We get :

W) = i%bpa (nk) ellfm +dp)h‘¢’a (r-R ja—dp )>

p=la=1 (jkez®
U k(R g+ ) =
=gnk‘l//nk>=gnk bpa(nk) z e M ‘(pa(r_Rjkl_dp»
p=la=1 (jk1)ez®

» We then project onto ¢ Reeo*s ‘(o Rooo dq)>:

ne Norp k(R j1y—Rogo+dp—dq ) 5 5

lelbpa(nk)( z): 3e <¢’/5(r— Rooo _dq)‘h‘(pa(r_ R _dp)>

p=la= jkDez
Ne Norh 4 (B B ~ ~

_ gnkzsza(nk) Z 3e|k-(Rjk|*Rnuu+dp*dq)<(pﬂ(r7 Rooo 7dq)‘¢a(r7 Rjkl 7dp)> V(q,ﬂ)
PP (ikDez
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Application to crystalline solids (V)

i%bpa (nk) Z eik‘(ﬁjkl’ﬁoﬂo*’dpqu)<¢ﬁ(r _ FQOOO _ dq )‘h‘(ﬂa (r _ ﬁ W d . )>
p=la=1 (j.kez®
_ Snkiibbpa k) Y 3eik-(ﬁjkl—ﬁoowdp—dq)<¢ﬁ(r ~Rugo—d, )‘ o, (r “Ry,-d p)> v(a,8)
p=la-1 (ikl)ez

# Let us define :

H,(Ri.R;)=(0,(r—R; ), (r-R;)) [Hamiltonian matrix element]
5. (R,.R i )= (p.(r-R, )‘(oﬂ(r -R; )> [Overlap matrix element]

We get :

> $'b,, (k) e Ew R by ®oLd R, d,)

Z;Z; Pan ( 263 pa\Fogo TUg: Ryjg +0,

p=la jkez
ik(R ju—Rooo+dp—dg) 5 5

—5nkzsza nk Ze e qsﬁa(R000+dq'Rjkl+dp) V(q,,B)
p=la=1 (jk,))ez®
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 120
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Application to crystalline solids (VI)

Ne Norp .

3 3h,, (k) SekFuRursddy R4 R, +d,)

p=la=1 (j.kez®

Ce:] & ik‘(ﬁjkl‘ﬁmm*dp_dq) D D
= gnkzlzlbpa(nk)( E)lez S 5 (Rooo +dg Ry +d,,) ¥(a,8)
p=la=. jklez
» We last define the following n, x n, matrices (n, = N Ngy,) :

Fi(k) with elements H (k)= Zelk'(ﬁj“’ﬁ"”“d“’dq)Hﬂa(ﬁooo +dg. Ry +dp)
(J.k.|)EZ

S(k) with elements Sy, (K)= Ze:k'(ﬁjk"ﬁﬂ"“*d”’d“)S/,a (Roo + dy. Ry +dp)
(jkNez

and the vector b, with coordinates b,,(nk). We thus end up with :

H(k)ﬁnk = gnké(k)ﬁnk

We solve this generalized eigenvalue problem and get n, = n.n,;, bands (see
examples in next slides).

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

The semi-empirical tight-binding method

» What we need :
{H,Z/,(Ri R;)= (p.(r-R, ]h\(pﬂ(r -R; )> [Hamiltoni an matrix element]

S.5(Ri.R;)=(p,(r-R;)|¢,(r-R;)) [Overlap matrix element]

)« » tight-binding :

® Consider these matrix elements as adjustable parameters...

® .. fitted on the experimental or ab initio (corrected DFT/GW) bulk band
structures.

# Use the same matrix elements in nanostructures (« transferabilty »).

Transferability assumes that the effective potential created by each atom is the
same in bulk and nanostructures.

121
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Fitting tight-binding parameters (1)

10 p3
— TBs
ab initio InAs

< Exp. 8
L CB effective mass
3 m* 0023 0023 m,
E 5 VB Luttinger paremeters
L 11 19.70 19.50

_10 ..... Y2 840 842

P ; Pl v 928 920
r X W L r K X

# Fit the tight-binding parameters onto selected experimental or « ab initio » band

energies and effective masses.

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

Fitting tight-binding parameters (II)

Energy (eV)

s irs1[|j:io InAs
Exp. B
CB effective mass
m* 0.023  0.023 mg
VB Luttinger paremeters
11 19.70  19.50
Y2 8.40 8.42
Y3 9.28 9.20

r X W L

r K X

# Minimize the squared error with respect to the tight-binding parameters :

2 _ tight -binding
Erre = Z (27 (snk -
selected nk

7Ky

2
larget)
Enk + 4 z ﬂ{mtight-binding
i

selected
masses

1

2
1
m itarget

o, and B; are weighting coefficients and k, is an arbitrary wavevector (for
consistency & overall weighting of the masses with respect to the band energies).

124
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Fitting tight-binding parameters (I11)

» Third nearest neighbors, three centers orthogonal sp? tight-binding model for Si :

E(000)  —6.17334 eV E,
E,.(000) 239585 eV K,
A 0.04500 eV E

E(220) 023010 &V E
E,.(220) —0.21608 &V F
E,(022) —0.0249 & E
E,.(220) 00228 &V F,
E,.(022) —0.24379 & E
E,,(220) —0.03462 eV E
E,(022) 012754 & E,

J111) —1.78516 eV
(111)  0.78088 &V
5 (111) 033657 eV
(111) 147649 oV
(311)  —0.06857 eV
T(311) 025200 oV
(113)  —0.17098 &V
(311) 013968 &V
(113)  —0.04580 &V
(311) —0.03625 eV
(113) 006921 &V

Y. M. Niquet et al., Phys. Rev. B 62, 5109 (2000)

Example : E,(220) = Hamiltonian matrix element between a s orbital at (0,0,0) and
a p, orbital at (2,2,0)a/4. A is the spin-orbit coupling parameter.

® Atomic orbitals remain unknown !!

DSM/DRFMC/SP2M/L_Sim

Comparison between a sp3 and

Energy (eV)

Third nearest neighbors orthogonal sp® model

Quy Nhon, 31/12/2007 126

a spid>s™ model for Si

Nearest neighbors orthogonal sp3d®s™ model

Energy (eV)

]
1
1
|
A ZW Q L

1
1
1
XZW Q L A

J. M. Jancu et al., Phys. Rev. B 57, 6493 (1998)

#» GW = « ab initio » method (no
adjustable paremeters).

# The sp3d°s™ model provides a
better description (especially on
the conduction band side), but at
a higher computational cost.

DSM/DRFMC/SP2M/L_Sim
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Application to nanocrystals and quantum dots (1)

P ) v ()= £3(0) v (F)

1
M,

(LCAO) :

» Write the wavefunctions as

N Norh

p(r)=2" 0. (r-R;)

i=l a=1

where ¢(r — R;) is an orbital of type « centered on atom i with position R;.

We get :
N Norp N Norp

hy) = chiah“/’a(r -R; )> = gzzcia‘%(r -R; )>
i=l a=1 i=1l a=1

128
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Application to nanocrystals and quantum dots (11)

N Norh N Norp
hy)=>> e (r=R)=¢d > c.|e.(r-R))
i=l a=1 i=1l a=1
# We then project onto p4r - R)) :
Norp
Zcia<¢/}(r - Rj)‘h‘(ﬂa(r -R; )>

a

(p,(r =R Jhlw) = i%fcmHﬂa(Rj,RiF gi%ciasﬁa(Rj,Ri)v(ﬁ, i)

€SP

(osle =R, =3

s L

orbcia<¢ﬂ(r_Rj)‘¢a(r_Ri)> v(B.1)

i=1l a=1 i=1l a=1
We last define the following n x n matrices (n =N x ng) :
{H with elements H ;i) = Hﬂa(Rj,Ri)
S with elements S;;i,) = Sﬁa(R i Ri)

and the vector € with coordinates c;,. We thus end up with :

He = 5¢ [é =1 for orthogonal tight - binding models]
129
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Numerical issues

He = &5¢ [§ =1 for orthogonal tight - binding models]

@ H and S are large n x n matrices (n = N x n,,). It is not possible to solve this
Ce:] eigenvalue problem using standard libraries (e.g., Lapack).

H and S are however <parse matrices : most of the elements are zero because
atoms only interact with their nearest neighbors. The matrix-vector products (Hc
and Sc) can thus be implemented very efficiently : only the position and value of
the non-zero elements of H and S need to be stored in memory.

A few wavefunctions and energies can then be computed around the gap using an
iterative diagonalization technique : a trial vector is updated step by step until it has
become an eigenstate of H. Each optimization step only requires one or more Hc /
Sc products (no explicit transformations on H and S) :

@ Lanczos,
® Conjugate gradients,
@ Jacobi-Davidson...

10-50 eigenstates of H can be computed in few hours for ~ 10 000 000 orbitals or
more.
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Application : Confinement in Si nanocrystals (1)

Spherical Si nanocrystals Cubic Si nanocrystals with
with diameter d side a and « effective »
diameter d such that :

3 -
7 - | =a
3 \2

The dangling bonds at the surface of the nanocrystals are saturated with H atoms.

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 131



Application : Confinement in Si nanocrystals (I1)

Y. M. Niquet et al., Phys. Rev. B 62, 5109 (2000) Lowest electron level |yr)|?
325

3 O Spheres (TB st)

O Cubes (TBsp’)
2.75] #  Spheres (EMA)
* <& Cubes (EMA)

p
225 o E

3 Third nearest neighbors f

orthogonal sp® model

Lowest electron energy (eV)

TE

s Lowest

> electron level

>

=

% 117eV

s __ Bulk bandgap _ | >y

s Eg =117eV

g - 3 Eoms :

#  Spheres (k-p)
D -4 & Cubes (kp) H
T o o= P Highest
T2 s e s w12 4 hole level
Diameter (nm) |

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 1oz

Application : Confinement in Si nanocrystals (111)

4,
LN P

= o

s 1 g i

.";u 25 %ée

o ®

Fe0®

= 0 .
o AE] =E,(d)-E,(bulk Si)

where E_ (bulk Si)=1.17 eV

0.5 1 1.5 2 2.5 3 35 4 4.5 5
Diameter d (nm)

» Comparison between a third nearest neighbors orthogonal sp® tight-binding (TB)
model, a nearest neighbors orthogonal sp°d°s” TB model, the
(PP) method [the wavefunction is expanded in plane waves
instead of atomic orbitals] and the ab initio (LDA).

# Note : The LDA is wrong on Eg, but is believed to be ~ OK on AE, !
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Application : Nanowire heterostructures (I)

# Vapor-Liquid-Solid (VLS) growth :

Back to Overgrowth
InAs... of a shell
InAs Switch to ® a
In & As nanowire n
gazeous growth
precursors & 8
Audroplet g 8
oy |
Substrate

M. T. Bjork et al., Appl. Phys. Lett. 80 1058 (2002)

PNAS. 102, 10046 (2005)

W.Luetal.,
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Application : Nanowire heterostructures (lI)

# Large interest in nanowire « heterostructures » for optics & transport :

M. T. Bjork et al., Appl. Phys. Lett. 80 1058 (2002)

PNAS. 102, 10046 (2005)

W.Luetal.,

# Strain relaxation is believed to be efficient in these structures, likely allowing
the growth of thick lattice mismatched layers.

» A few issues :
F)
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Application : Nanowire heterostructures (ll1)

¥

@ The bond length is 6.7% shorter in GaAs than in InAs. The InAs layer is thus
compressed by the GaAs core, but can partly relax strains at the surface of

the nanowire.

@ The GaAs shell move surface traps away from the InAs layer, but prevents
strain relaxation.
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Application : Nanowire heterostructures (1V)

# Assuming coherent growth, strain relaxation can be computed using Keating's
Valence Force Field model :

€S
I l 7

E :%ZNZT: = [(Ri -R,f _(d‘?)z]z

(apf Bond stretching
tant o
NN 3ﬂ-- 1 2 cons:
+Z ouko (Ri_RiXRk_Ri)‘**(di?Xdi?()}
T ik 8ldi M 3
[
InAs GaAs Bond bending
do| 2,623 A 2,448 A constant
o 32,65 N/m| 39,85 N/m
B 7,35 N/m 10,86 N/m
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Application : Nanowire heterostructures (V)

# We need to account for the dependence on the tight-binding parameters on the
atomic positions.

€S9

For two center tight-binding models :

Ho Ry, Rz):<€/’s(r* Rlxh‘(ﬂx(r’ Rz)>

=1 XVspquz = R1D where | =cosé= X(R27_Rl)
‘Rz - Rl‘

Bond length

dependence Bond angle
dependence

where :
aspcx
Vo (d) =V (do (%) [Harisson's law]

d, is the equilibrium bond length and o, is an exponent (around 2).
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Application : Nanowire heterostructures (V1)

Core Core/shell

y [m]
y [nm]

-10

-15 <10 -5 0 5 10 15 ~10 0 10 -15 <10 -5 0 s 10 15 ~10 0 10
2 [nm] X [nm] 2 [nm] X [nm]

-6 -4 4 6 -8 -6

2 0 2 -2 0 2
BQUQ (%] Q%]

» Strain relaxation is very efficient in core-only heterostructures. The InAs layer
protrudes outwards and distorts the surface of the nanowire. The strain distribution

is however very : the surface is overrelaxed while the center of
the InAs layer is still significantly compressed.

# The GaAs shell in the InAs layer. The strain distribution is
however much more homogeneous.
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Application : Nanowire heterostructures (VII)

Core Core/shell

y [nm]
-

y [nm]
>

- 0 -10 =S
z [nm] X [nm]

04 0s 06 07 08 09 1 L 12 13 08
€, [eV]

:ac(exx +£yy +gu)

# Strain relaxation in core-only heterostructures digs a
at the surface of the nanowire !
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Application : Nanowire heterostructures (VIII)

H1 E=-0.011eV El E =0.946 eV

A A
» The (E1) near the surface of the nanowire by the
inhomogeneous strain relaxation.
» between H1 and E1 !!
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Application : Nanowire heterostructures (IX)

H1 E =0.025eV El E=1.051eV

A

Y. M. Niguet, Nano Lett. 7, 1105 (2007).

» Both particles are now well confined in the InAs layer.

» Large overlap between H1 and E1.
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Application : Wavefunction imaging (1)

InAs/GaAs quantum dots

[(11o] *
%

N\
1001

©  InAs Pyramid
© InAs Wetting Layer
© GaAs Matrix

# The sample is cleaved (cut in two pieces along a crystallographic plane). The
cleavage plane goes through some InAs quantum dots, that show on the surface
of the sample.

The cleavage plane is then imaged with a scanning tunneling microscope (STM).
The InAs dots appear as bright spots, that tend to align along columns.
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Application : Wavefunction imaging (II)

Y [nm]

=25 =20 -15 -10 -5 0
X [nm]

z[om]

Scanning tip “
Surface structure

Tunnel CUHGUAN

Tip motion : Ve

sample

# The current flowing through the tip
is plotted as a function of the tip
position (at constant tip-sample
distance). This roughly provides an
image of the wavefunctions of the
levels the electrons are tunneling
onto.

g : The electrons can
only tunnel onto the lowest level.
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Application : Wavefunction imaging (I11)
20
-} -
E E
) =
-
-25 -20 -15 -10 -5 0 5 10 15 20 25 =25 =20 -15 -10 -5 0 5 10 15 20 28
X [nm] X [nm]
ﬁ U— E
-25 <20 ~15 -0 -5 0 s 10 15 20 25
x [nm]
» : The electrons can
tunnel onto the first two levels.
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Application : Tunneling spectroscopy (1)

Diameter 6.4 nm

=)

=

=

= 05

g

3 00

o

£ 1P, 6%
g 05

5 1S, 2x

El
N
o | i g ) ’
\HU e U o tip nanocrystal  substrate
2, -1 [} 1 2
Bias (V)
U. Banin et al., Nature 400, 542 (1999).
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Applications : Tunneling spectroscopy (ll)

Diameter 6.4 nm

EY
=

o
@

2

Tunnelling current (nA)
o
>

3

dlraV (a.u.)

nanocrystal

U. Banin et al., Nature 400, 542 (1999).
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Applications : Tunneling spectroscopy (I11)

Diameter 6.4 nm

=)

05

0.0 -

Tunnelling current (nA)

difdV (a.u)

Bias (V)

+U
6x

44 ax

nanocrystal  substrate

U : Addition energy

U. Banin et al., Nature 400, 542 (1999).
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Applications : Tunneling spectroscopy (IV)

Diameter 6.4 nm

EY
=

0.5

0.0

Tunnelling current (nA)

3

10

dlraV (a.u.)

nanocrystal  substrate

U. Banin et al., Nature 400, 542 (1999).
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Applications : Tunneling spectroscopy (V)

Diameter 6.4 nm

=)

o
o

S

Tunnelling current (nA)
o
°

difdV (a.u)

tip na

Bias (V)

U. Banin et al., Nature 400, 542 (1999).

nocrystal ~ substrate
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Applications : Tunneling spectroscopy (VI)
Diameter 6.4 nm (180 =083V
L.5f
N
L oeP) = 11200V (1) = 135Be¥
—_ 1
5 —-‘i(lSJ:DMMeV
g
=
= 05 2 1
E[:z[ t‘[:t‘[—EV
2yg) = 0120 eV
oF - el ) =-0.005eV ]
- 2(2“‘)=70.120|:V g
L '
05 Nanocrystal [ St
o .Ixillull :
Second nearest-neighbors orthogonal sp® model
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Applications : Tunneling spectroscopy (VII)

To o Taslp‘
S s " ° L 1P, 'S 6x
< x v Ac
= 16 By 1S, & 2%
B o .
Q1.4 1
g & ‘e
g 12 N '
< O 4o T
] 1 o o- v
= %a, 1vs % 4x
o . Avg
08 2u * 4x
2 3 4 5 6 7 8
Diameter d (nm)
07
asl| © A TB sp’
# The calculated bandgap U e ags™ LE O
energies and electron levels _ost[ ¥ AyTBer o °
L . = O A ST™ 0odg ©
splittings are in very good 2 s 55 ] «
. . 5 (&) x
agreement with the experiment. g ol o 5o oo o
‘% 02 ¢
] about the 8 o
interpretation of b I N * .
sakak ok ok k x ¥ % ¥+
0.8 1 12 14 16 18 2
Bandgap energy E: (eV)
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 152

Applications : Tunneling spectroscopy (VIII)

Diameter 6.4 nm

V(V)
Electrostatic potential bias V=1V

» We have computed the full I(V)
curve using the so-called
orthodox theory.
Electron-electron interactions
were taken into account self-
consistently.

7 (nm)

7 (nm)

Density3e @V=1V

Density3h*t@V=-1V

DSM/DRFMC/SP2M/L_Sim
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Applications : Tunneling spectroscopy (I1X)

Diameter 6.4 nm

Y. M. Niquet et al., Phys. Rev. B 64, 113305 (2001)

1P+ 1+

’_ﬁ\zvg +1P,

1,2+1S, 1S,

3 he
=
=
% Theory
=
=
Il
Q
Experiment

2 -5 -1 05 0 05 1

vy)

2 i nanocrystal  substrate

» Injection of both electrons and holes at high enough positive or negative bias.
» Measurement of practically impossible.
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II.3 : The k-p approximation
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€SP

From the atom to the solid (1)

E
A ° ° Antibonding
- * . g Bonding
E
. . Most antibonding
I I Most bonding
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 156
From the atom to the solid (II)
Solid
Continuum
of levels
(« band »)
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The case of bulk semiconductors (1)

Si atom Bulk Si
A E A E
4s Mostly 3s,3p .
antibonding -
3d -
3p Bandgap B
Mostly 3s,3p -
3s bonding
2p 2s, 2p bands /p /d/
2s
/Qé 7
1s band
s s ban sp® bonding
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The case of bulk semiconductors (ll)
D
£
e}
L 5
¢ L,” Ty 0 2
Ny =
“I' GoAs T % r, %
Q'TZ'/_\-\P/\\\:&/' N o N e
ok ;&: Bandgap fy Ga Ga
Lo ] ] S)
§ —4 x.‘< 4
[
=B 1
WL 7.// As As
o} ]
“af,, e 2 L
-r \&/ T -g ¥ ¥
L Y X UK 3 o
k vector = -
Ga Ga
[ X)[Y).1Z)
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The equation for the periodic part of Bloch waves (1)

"’ .
- H Arqonk (r)+ Vet (r)(pnk (r) = EnkPrk (I'), Prk (r) = elk runk (r)
0

Ce:] » Equation for uy(r) :

° Ar(onk (r) =div grad Prk (r) = Vr : Vr(onk (r)

d Vr(:onk (r) = Vr Ikeik.runk (r)J= ikeik.runk (r)+ eik.rvrunk (r)
= eik<r [Vrunk (r)+ ikunk (r)]

oV, V.o (r): Ve '(eikvr[vrunk (r)+iku”k (r)])
=ie™ K[V, Uy (r)+ikug, (r)]
+e* v, v, u, (r)+ik-v,u,(r)]
— kT [Arunk (r)+2ik -V, u,, (r)—K?u,, (")]

2
o€, 420KV, (1) v (DU (1) = 0 ()
0

Z—;O[pz+<hk)2+zhk-pbnk<r)+veﬁ (P () = i )
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The equation for the periodic part of Bloch waves (1)

S [p? 4 (1) + 23 Pl (1) o (e ()= .1 (r) (k- dependent hamiltoniar
0

Cej # One equation for each k.
The solutions must be chosen with the real space lattice :

Uy (r + 03, +n,a, +nga,)=u,, (r) v(n,n,,n,)ez?

Periodic boundary conditions on unit cell volume Q,= discrete spectrum (bands).

oftes % We define the following dot product
s Y} : . .

“I' Gaas " x,/ o for the periodic u,,'s:
i e (U U, = g [407, (Pl (1)
i 01%/( = — 7 mk nk Q Qo o mk' nk
> 2 .
2 e ] We normalize the u,, 's such that :
=
w T./ <Umk ‘unk >Q0 = gnm

e Beware :
N (Ui U g, #0 i k2K
uK I
k vector
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€S9

k-p theory in bulk solids (1)

# Let us assume that we were (hardly !) able to solve this equation for a k point of
utmostinterest (e.g. k=0) :

2

p
2 Uno(r)+veff (r)uno(r): gnouno(r)
My
" 7 .
¢ L: rg . Uso: U7o: Ugo
4} o
GoAs Usg X,
| ﬂ/ 5
-, Bandgap
S [las ,%._ We now want to get the lowest
2 Upgr Usgy Ugg | conduction bar}d energy &g
3 around k = 0 without having to do
2 this laborious calculation again
uw for each k...
L A =
k vector
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 162

k-p theory in bulk solids (1)

» What we know :

2

ZDWOU"O (r)+ Ve (N (r) = £10U(r)

» What we want :

i[p2 +(nk)? +2nk - p}]sk (r)+ Ve (Nuge (r) = egug, (r) for small k
0

p? A B2
EUSk (r)+ Vg (g (r)+ m*l)k -PUg(r)= |:‘95k - 27%}“&( (r)
» Whatto do :

® The k-p term is the only one that changes us, (r) into ug,(r) !
® We are only interested in small K’s.
® The conduction band &g, is well separated from the others.

Treat the k-p term in perturbation !!
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First-order perturbation theory

» We get at once :

n’k? h
Es — om. E5o +m7k.<u50‘p‘u50>go
o o

However, ug,(r)periodic = (ug, PlUso ), = =1{Ugo |V |Usp )y =0
As a consequence,

n’k?
&g = &5 +—— (Free electron band)
2m,

Far from the actual result !!
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Second-order perturbation theory (1)

# Let us proceed with second-order perturbation theory :
SRR S
2mo M; 775 €50 — €no

z K, s

a=X,y,z

S = &g t+ where s =(Uyo[PUs ),

2

n’k?  h?
+=
2my, MR E—Eno

2 g2
- hk h z Z Z K, 7rn57rn5 k
My

mo nba=xy.z f=xy.z €50

a
=&5+ wherek, =a-kandz,; =a-m,g

It can be shown that for symmetry reasons (onIy for the lowest conduction band at
k =0 in direct gap semiconductors!) :

® The a #  terms cancel each other.
® The remaining o = § terms are all equal.
n’k?  n?

7z _7*
oS
D e e (kf +k§ +kf)
2my My 175 Esp — Eno

2
h?k? 1 ‘ Uno| P,|Uso) @

Eg =€+ —= Where — ="+ = 27‘)
2m m m, mo n#5 €50 ~€no
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The effective mass

2
n’k? 1 ‘ (Uno| P2 Uso ), 1 &%
Eg = £y + —= Where —= . 27" =k
2m m mO m0 &0~ €no h° ok
» Free-electron-like band with an m*:
—7 — Only works well around k =0.
(paio] s This is just second order
!

(ne s.0.) J
|

Bulk band energies (eV)

Practically m*

e.g., cyclotron
resonance
experiments.

H. Fu, L-W. Wang and A. Zunger, Phys. Rev. B 57, 9971 (1998).

o
=3
i
e
=
=
o
o
=
=

Wave vector k along (100) direction

perturbation theory !

Lower m* = more dispersive
band !

is known from,

m" (mo)
InAs 0.023
GaAs | 0.067
CdSe | 0.130

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

The first-order ug,

# First-order perturbation theory (for the wavefunction) :

K-m,
Cej Ug (r)= Uso(r) z#u ( ) where g :<uno‘p‘u50>no

My nz5 €50 — €no

As a consequence,

o n5 €50 ~ €no

n K-
{Usie Ui )y, = (s |Uso ) +m*2 n": (Usp [Ung ),
N —_—

1

166

2
*Z Kt (Uno|Uso ), hzZZ Kims k- —Tos_ ——"{u mO‘“n0>
&,
%,_,

mo n=5 €50 ~ €no %/—/ 0 n=5m=5E50 ~
0

<u5k"u5k> 1+7z K" "ms k- Kemys

MG 7% €50 = Eno 50 — €no

(Ugie [Ugy ), =1+O(KK’)

€mo €50 ~

€no

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007
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Electrons in slowly varying potentials

# Let us now add a « slowly » varying potential v,,(r) to the effective potential v «(r)
(for example the potential created by external electrodes). The one-particle
wavefunctions ¢,(r) and energies &, now satisfy :

€S9

- AV (0, (1) )= 50,0

NB : « slowly » varying means that v, (r) does not change much on the scale of
the unit cell :

//\’slow(r)

Veff( I’)
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The effective mass equation (1)

I N 6) g () o ()= (1)

2m,

Cej » We look for the lowest-lying electron states.
We expand ¢(r) in Bloch waves :

ik-r
zwnke unk

and assume |oy,| << |ag, N # 5. Since vy, (r) is slowly varying, we also expect o]
to decrease rapidly with |k].
We then easily get, dropping all n =5 terms :

3 RG] STCE YRy
Zk:%k [esi + Vsmw(r)}%Ik U, (r)= gzk:‘ZSkeik'rUSk (r)
;ask [E5k — & + Vgou (N)E"Ug (r) =0

2
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€S9

€SP

The effective mass equation (I1)
Zk:ask [E5 — & + Vo (NE* U, (r)=0
# We next multiply by eu;,.(r) and integrate over space :
> (e — ) APre UL (Pug (1) + [dre vy (g (Nug ()] =0 vk
K
We have :

Jd®re g, (rug (r) = (k'—k) [Bloch waves orthogonality]
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The effective mass equation (111)

» For small enough |k| and |k’|,

i(k—k') * i(k—k')- 1 *
Id Sre (kx )rvslow(r)JSk'(r)usk (r) ~ Id 3re ek )rvslow(r) _[d 3ru5k'(r)usk (r)
—_— g Q

Slow ly varying Rapidly varying 0 Q

~ Vyow (kl_k)<u5k‘ ‘ Usi >go

# Proof :
Unit cell S e S Vsiou(r)
averaged S i —
Vsion(F) Ugie (1 g (1)
_[d 3r-(':‘i(kikl).rvslow(r)u;k'(r)usk (r) = Z I d 3r.(':‘i(kil'(‘).(pr':z)Vslow (r + R)ng' (r + R)USk (r + R)
- —_—
R=nja; +npa,+n333 0 Almost constant within g
Replace withits average value
in the unit cell
s Y a4 R) [ (g (1)
R=ma; +nya; +ngag = =0 Q
i(kok ) 1 .
= e, (1) 2 [0 (i (1)
0 Q
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€S9

€SP

The effective mass equation (1V)
Zk:ask [E5 — & + Vo (NE* U, (r)=0
# We next multiply by eu;,.(r) and integrate over space :
> o (e — ) A2re UL (Pug (1) + [ re My (g (Nug ()] =0 vk
K
We have :

[d®re g, (rug(r) = 5(k'—k) [Bloch waves orthogonality]
_[d 3r-ei(kik‘)'rvslow (r)";k'(r)usk (r) ~ Vslow (kl_k)<u5k' ‘ uSk >QO [Vslow (r) SIOWIy Varying]
Hence we get :

D (510 = &) (KK )+ gy g (KK N Uy Uy >QO =0 vk
K

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

The effective mass equation (V)
Zask'(gsk' _8)5(kl_k)+askvslow(k'_kXUSk"USk >go =0 vk

# We then use k-p theory for &g, and (Ug|ug g

h2k|2
Ege =Egp+—+.

2m
(Ugie|Ug ), =1+ O(kk")

Dropping all terms that couple k and vg,,(r) [i.e. O(kk’)], we end up with :

slo

21,12

S g g0+ KT
- 5k 50 Zm*

—gj&(k'—k)+a5k\?slow(k'—k)=0 vk

» We last go back to real space - We multiply by e*r and sum over k’ :

K

hzklz ' ik'r ' ik'r
Zzaskv[é‘w + 72m* - SJ&(k 7k)e ) + Zzaskvslow(k 7k)3 KT = 0
k k' k

172
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The effective mass equation (VI)

» We easily get :

hzk'Z ' ik'r ' ik"r
S s o ol 4 5 T B <0
eSh) Kok " Kok
ik-r _ ik-r e ik =k)r
LS 00, (k'—k 0
zaske Ego Tt om & +za5ke z slow( ) =
k k k'

ik-r hzkz ik-r nik™r " '
Z(lskek [550 +‘2m* 75]+Za5kek zvslow(k )31( =0 [k :kik]
k k k"

Vaiow ()

# Let us finally introduce :
V()= Yoy
= ;rq/(r) =Y ikage™"
k
=V, -Vr(//(r) = Arg//(l’) = 72“k2015ke"('r
k

y(r) thus satisfies the following equation :

[eso—z%m-a]w(r)+vs.ow(r)w(r)=o
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The effective mass equation (VII)

AW (W)= )

Cej # y(r) is called the « » function. The true conduction band wavefunction
indeed reads :

p(r)= ;askeik‘rusk (r)= zk:askeik'ruso ()= w(r)ugo(r)

y(r)

()
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The effective mass equation (VIII)

AW (W)= )

# NB : If vy,,(r) =0, we recover Bloch waves as the solutions of the effective mass
equation :

o ()= (e =g 0)= {7~ o
p(r) oc e [‘/’(r) =y ()ug () = " "uy (r)]
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Interpretation of the envelope function

yAr)

0

# |(r)]2 = | wAr)|? |use(r)[? is the probability to find the electron at r.
The probability p(r) to find the electron in an unit cell around r is therefore :

p(r)= .[d3v\(p(r+v]2 = J'd3v\1//(r+v]2\u50(r+vf

Qo Slow ly varying

~ ,[d My (r + V}Zi J.d Vo (r + VXZ ~ ,[d My (r + V}z ~ Qo"//(rxz
Q QO Q Qp

1

[y(r)|?=p(r)/Q, is thus the unit cell-averaged probability to find the
electron atr.
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Ehrenfest’s theorem

» Time-dependent version of the effective mass equation :

n? - op(rt
A v ) =in A

Ehrenfest’s theorem for the average position r and « impulsion » p =—iaV, :

S0 =)0

PO =~{Y Van )
( )

electron appears as a classical particle with position r, = (r)(t) and
impulsion p, ={p)(t) :

where (A)(t)=(w(r;t)

Aly(r;t)

d

1
— I (1) = —p.(t
90~ Lo,
d

a Pe (t) ==V Vgou [re (t )] = Fijass

Newton’s equations with
an effective mass m”

:if y(r;t) is localized enough with respect to vg,,(r), the

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

Application : The spherical nanocrystal (1)

Infinite spherical well model :

Veont ()=0 if <R
Vot (F) =400 if r>R

# We are looking for the lowest conduction band state.
The latter satisfies :

h? _
_WAH//("):(E_SSO)‘//(") ifr<R
w(r)=0ifr>R

We now take &g, = 0 as the reference of energies for simplicity.

# Since the potential has spherical symmetry, we may split y(r) as follows :

y(r)= Rulr) x Yn(0,0)

Radial part  Spherical harmonic

The lowest electron state will likely be s-like (Y, = Yy,, = constant) :

p(r)=Ry(r)

178
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Application : The spherical nanocrystal (l1)

» The effective mass equation then simplifies into :

_1? 1%[rRy(r)]
2m'r  or?
Ry,(r)=0ifr>R

= £,,Ry(r) if r <R [Laplacian in spherical coordinates]

We look for R o(r) in the form R,(r) = fo(r)/r :

) .
CAUR, [;:g(r)] e ful) <R

lim fo(r)=0 and f,(r)=0ifr>R
The solutions of this equation read :

f.o(r)= Acos(kr)+Bsin(kr) if r < R, where 7k =,/2m’e,,
We last enforce the boundary conditions :

lim fo(r)=0=A=0

f.o(R)=0= Bsin(kR)=0 jkz@zglmo
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Application : The spherical nanocrystal (I11)

» We thus finally get :
Woolr)= Blsin[@r} if r<R
r

Wao(r)=0if r>R

, Rzt (n+1)
withenergy ¢, = ———5— "
gy €ng M R2

B is a normalization constant such that J'd 3r\¢//n0(rx2 =1.

» In particular,

v, (r)zifsin[fr} if r<R W'z
00 J2R ¢ R with energy &y, = Pty
. 2mR
%o(r)zo if r>R

The 1/R? dependence of the confinement energy is typical of the effective mass
approximation with infinite barrier heights.
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The valence band problem (1)

» We now wish to do k-p theory for, e.g., the highest valence band energy &,
around k=0...

6tlas . '
— . Lol Uso: U7o, Ugo %
[ GaAs E )
Usy ] /_\ E
2 T—)/\r\ X i

ok r, Bandggp Uiy
/ 4

—
> e
L -2 Uzg, Ugg, Ugg HH
> X3 /
S -4 \'\‘ R LH
2 o
w op I 1

s ~ ;_-’ S0

-0 FLa /—-h
-1z \5__ Ugo Ty
[SY T a X UK B
k vector

Problem : There are three nearly degenerate highest valence bands
around k=0. Standard second order perturbation theory will fail !
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The valence band problem (I1)

/

o e 2 -
= _ln’s_',/// T =
3 ™ B - -
~ — )
> Uz, Uzgs Ugo o
s N o 0
u:J ek ]

Ll % i Ga Ga

e % [ X0IY)[Z)

—12f by re

L A A X uK I
k vector

» According to this picture, there should be three degenerate highest valence bands
at k=0, corresponding to bonding combinations of p,, p,, and p, orbitals.

This degeneracy is lifted by the so-called « »,
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Spin-orbit coupling
» Spin-orbit coupling is a effect...
Semi-classical image : Imagine you are riding an electron... The nuclei appear as
moving charges in your frame ; they thus create a magnetic field that acts upon the

spin of the electron.

The orbital motion of the electron thus couples to its spin ; hence the nhame «
». The hamiltonian now reads :

I o) vy (r)aa(r){L@xvrvmn-p}(r):w(r)

2.2
2m, 2mgc

Spin -orbit coupling term
where v, (r) is the ionic potential and S is the electron spin.
» As a consequence there are no more pure [1>7 1> states, but only mixed states :
o(r)=o, (r] T> +(p¢(r] ~L> [Spatial modulation of spin]

Spin-orbit coupling actually has no effect on s-like atomic orbitals, thus little effect
on the lowest conduction band.
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The valence band structure at k =0

Without spin-orbit With spin-orbit
1 [5
IA A =50 - 500 meV
‘ Heavy hole

Split-off Light hole
I

‘X TH X J,My TMY LMZ TMZ ¢> The highest valence bands u,,'s can be mapped onto the following

all degenerate atk =0 eigenstates of J =L +Sand J, (where L is the orbital momentum) :

272/ 2
g% :iz\(x +iY)7T)
Heavy and light holes

Split - off band

ez

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 185



Kramers degeneracy

Without spin-orbit With spin-orbit

eSS < {AE

A =50 - 500 meV

‘ Heavy hole
Split-off Light hole
I
The bands are twofold The bands remain twofold degenerate.
spin-degenerate (one | 1>
and one | > band) This is the so-called
degeneracy, that has to do with time-
reversal symmetry.
The degeneracy between | 7> and |{>
bands without spin-orbit coupling is just a
special case of Kramers degeneracy
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 186

k-p theory for the valence band (I)

» We want to compute the effect of the k-p term on the highest valence bands away
from k=0 (here leaving out the spin-orbit term for simplicity) :

¢S P (P vy (P (r)+miok Pl ()= {gnk fﬁ}unk(r)

2m, 2m,

But we still have to face this near-degeneracy problem : straightforward second-
order perturbation theory is bound to fail...

% Solution :

@ Treat exactly the k-p couplings in the |J,mj> manifold.
® Treat the k-p couplings with remote bands in perturbation.
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k-p theory for the valence band (ll)

» Example : Suppose we are interested
in the heavy and light hole bands right /T‘ﬁ
around k = 0, within an energy
range << A...

. . ‘ Heavy hole
We build the matrix of the k—dependent
hamiltonian in the basis : Splilt—off Light hole

3 3\[3 113 1\/3 3
B e N T g [ e
{‘2 2>2 2>2 2>2 2>}

We then correct the elements of this 4x4 matrix for the coupling with remote bands
using second order perturbation theory.

We last diagonalize the 4x4 matrix and actually get twofold degenerate bands...
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Luttinger’s hamiltonian

» The 4x4 matrix in the ‘§+§> §,+l>, §,71>, §,7§> basis reads :
2 2/12 2/12 2/|2 2
2

-P-Q -S R 0 P= hk( |

2| —s" _p 0 R Q=7,k¢ +ky -2k
H(k):L . Q where 2 S

m,| R 0 -P+Q S R =3[y, (k2 —Kk2)-2irsk,k, |
0 R s -P-Q S =235k, (k, — ik, )
Y1, Y. @nd y; are the so-called « ». They can be expressed,

like the conduction band effective mass, as a function of the ,;, = (Uo|P|Uyo)’s-
Practically, we use experimental values derived from measurements of the valence

band structure around k = 0.
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Light and heavy hole bands

# The eigenvalues of H(k) are :

TE

[

2 2
)=k £ 1 [ 3 = G +IgkE ik | »
0 0
Split-off LH
» Let k=(0,0,k). We then get : P I. °
"’ 2 7’k? . m
E.(k)=——(,-2y,)k* =————— where m,,[001]= 0
HH( ) 2m, (71 72) 2m’,..[00] nn [001] =27,
? ) hk? . m,
E(K)=——(,+2y,k* =——5——— where m,[001]]=—2—
LH( ) 2m, (71 72) 2m;,,[001] wn [001] 27,
Let k = (k,k,k)//3. We then get :
"’ n’k? . m
E,y (kK)=———(y, - 2y3 k* =—————— where m;,,[111]=—2—
HH( ) 2m, (71 73) 2m’,, [L11] an [111] 1—272
7 ) h’k? . m
E.Kk)=———0,+2y,k* =———— where m, [111]]=—72—
LH ( ) 2m, (71 73) 2m’, [111] w [111] 7t 27,
Anisotropic heavy and light hole masses !
190
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Valence band warping

Shape of the heavy hole band

energy surfaces

C

Shape of the light hole band

in Si energy surfaces in Si

# The energy surfaces around k =0 are are deformed or «
consequence the valence bands can not be characterized by a single effective

mass.

» spheres. As a

# It is not possible to make an accurate single band approximation for the holes
except in special circumstances (some quantum wells and strained systems). A full
4 bands (Luttinger hamiltonian), 6 bands (including the split-off bands in the basis)
and sometimes even 8 bands (also treating the conduction band on the same

footing) k:p model is needed.

DSM/DRFMC/SP2M/L_Sim
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Holes in slowly varying potentials (I)

» Let us again add a « slowly » varying potential v, (r) to the effective potential
Vei(r)... Can we write for the holes an equation similar to the effective mass
equation for the electrons ?

The answer is yes, though the derivation is a bit more involved...

# In the case of the four bands Luttinger hamiltonian, the hole wavefunctions ¢(r) in

Vgou(F) can be written :
2" V.2 2 V. 312 2o

3.3, (ryr
275 Y2

o) =Vl
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Holes in slowly varying potentials (lI)

# The four envelope functions (1), w.1,(r), w_1,(r) and . _4,(r) satisfy :

W.a1(r) ¥.a1(r) W.a1(r)
Woaa(r) ¥oo(r) ¥o(r)
4 W ao(r) V(T () W 45(r)
() W 315(r) W 315(r)

where H is Luttinger's 4x4 Hamiltonian with the substitution :

k, —>—i0/0,
k, >-id/0,
k, = -i9/0,
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Holes in slowly varying potentials (lII)

o(r) =y 4(r I’§,+§ Y (r r§,+1 +yy(r r§,_l + go(r r§1_§
* 2 2 * 2 2 B 2 2 N 2 2
W .sr(r) W.aro(r) W.aro(r)
H W.aio(r) g, (r W .a2(r) _ W .aio(r)
W 15(r) W 1o(r) W 15(r)
W 5(r) W 51o(r) W 51o(r)
P=_71Ar
0? & 0?
—_P- _ = — - 4+ - 22—
2 P *Q S R 0 Q 72(6)(2 EYr
-S -P 0 R
IR +Q where o ) L, &
2m,| R 0 -P+Q S R=—3]7,| —5——5 |~ 2iy; ——
. . ox? 6y2 oxoy
0 R s -P-0Q
oo .0
S =423y, —| ——i—
s az(ax 6yj
System of coupled differential equations
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Confinement in semiconductor heterostructures (1)

3 E
S
Q ——
§ CB
E
2
=
E ©  InAs Pyramid VB
[
5 © InAs Wetting Layer
= ) . GaAs B )
E] © GaAs Matrix Conduction band profile
#2
- 2m* Ar‘//(r)+ Vslow(r)l//(r) = [5 - gso(r)]l//(r)
#2

WAr‘//(r) + Vaiow (r)l//(l’)+ €50 (r)l//(l’) = gl//(l’)

# The conduction band profile acts as a potential for the electrons (there are actually
some subtleties due to the variation of the effective mass across the interfaces).
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Confinement in semiconductor heterostructures (Il)
E

!0

[} [}
= <8
O©|<| o
Quantum well

Infinite well Well with finite depth U,

# A finite well only binds a limited number of states.

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Confinement of the holes

196

% Holes have negative dispersion in the solid :

T E
Increasing kinetic energy / HH
Split-off LH
I

We are looking for the highest hole wavefunctions (lowest ionization energies) :

E E
[%] n [%]
g < g Bound hole
o=l o states
Quantum well GaAs| InAs
197
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Application : InAs/GaAs quantum dots (I)

71 0e1]

iifaal

-200

-400

e-Energy (meV)

-600

[ —
12nm

M. Grundmann et al., Phys. Rev. B 52, 11969 (1995)
O. Stier et al., Phys. Rev. B 59, 5688 (1999)

» Eight bands k-p calculation in the basis :

XX DY H[z )]z 4 fs1)s )

The k:-p coupling between the highest valence bands and the lowest conduction
band is thus fully taken into account (i.e. beyond second order perturbation
theory). The effects of strains have also been included in the calculation.

-200

-400

200

h-Energy (meV)

-600

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Application : InAs/GaAs quantum dots (II)

Electron and hole states, labelled

according to the number of nodal
Cea surfaces parallel to each of the three
planes on the right.

b=13.6 nm;h=b/2=6.8 nm

Increasing energy

6, T, & v
@@@@@@

198

O. Stier et al., Phys. Rev. B 59, 5688 (1999)
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Application : InAs/GaAs quantum dots (III)

Hole energy (meaV)

Electron energy (meV)

O. Stier et al., Phys. Rev. B 59, 5688 (1999)

Gads CB edge

Hing layer-

=0 = GaAs ¥E edge

16 T2 71 5 5
Base length (nm)

The zero of energy is the bulk
conduction band edge in GaAs on
the electron side, and the bulk
valence band edge in GaAs on the
hole side.

CM and VFF are two different
model for the strain distribution in
the system.

« Wetting layer » is the energy of
the electrons and holes in the thin
InAs layer running below the
pyramids.

-

As expected, the bandgap
energy increases with
decreasing base length due to
guantum confinement.

DSM/DRFMC/SP2M/L_Sim
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Application : InAs/GaAs quantum dots (V)

» Eight bands k-p calculation in the basis :

X1,

x4),

!

v i),

zm),

zl),

st

b=13.6nm;h=b/2=6.8 nm

si)f

Electron Ground State

s part: 0.89

Hole Ground State

s part: 0.01 Dy part: 0.46

@ e

pypart: 003 pypart: 0.03  p part: 0.05

Py part: 0.46 pz part: 0.07

O. Stier et al., Phys. Rev. B 59, 5688 (1999)
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The limits of the k-p approximation

# The k-p approximation is accurate in weakly confined nanostructures such as
InAs/GaAs quantum dots and large nanocrystals.

€S9

f

Energy (eV)

# However the k-p approximation suffers from known deficiencies :

at large k / high energy :

Si valence band structure

1/3rL r

13rxXr 113TK

As a consequence the k-p approximation fails to describe the electronic
properties of nanostructures at high electron/hole energy (e.g. highly confined
structures such as small nanocrystals).

® The k-p approximation can not handle

We need an atomistic method reproducing the bulk band structures
over a wide energy range to overcome these deficiencies

DSM/DRFMC/SP2M/L_Sim
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Comparison : k:-p versus tight-binding

k-p Tight-binding

Description of bulk band

Cej structure

Accurate throughout the
whole first Brillouin zone

Description of
nanostructures

Usually accurate even in
highly confined systems
(small nanocrystals).

Can handle atomic-like
boundary conditions (e.g.
surface reconstructions, ...)

Computational cost

Continuum model : does not
depend on the size of the

system

: they are based on a

parametrization of the bulk band structure (through effective masses or tight-
binding parameters) and implicitely assume that the effective potential created by
each atom is the same in bulk and nanostructures (transferability). This, of
course, is an approximation that always break down in small enough systems.
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Part Il

Self-energy and excitonic corrections
In nanostructures

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 204

Outline

@lll.1:
The « self-energy » correction

€SP

2[11.2 :
The exciton
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IIl.1 : The « self-energy » correction

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

The self-energy problem (1)

# Let us add an electron to an otherwise neutral solid...

lon cores

Coulomb hole

This electron repells nearby
valence electrons, thus leaving
partially « naked » ion cores
around him.

The electron is thus « clothed »
by a cloud of positive charges
(also known as a Coulomb hole)
that screens its interactions with
the other particles. This Coulomb
hole follows the electron
travelling in the solid.

206
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The self-energy problem (1)

» Let us add an electron to an otherwise neutral solid...

lon cores

Coulomb hole

» The charge q =—e(1-1/g,) cast out from the Coulomb hole is expelled to « infinity »
and does not interact any more with the additional electron...

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

The self-energy problem (llI)

208

# In finite-size nanostructures

00000000
00000000000 however, the charge cast out
00000000000 from the Coulomb hole is
) Q0000000 expelled onto the surfaces of
*‘ d 000000000 the system, and thus still
Q0000000000 interacts with the additional
@OOOOOOOOOOO electron...
O00O0 O0000OOOOO0OO
O00000O00OOOOOOOOO . )
00000000000000000 » Tt_we interaction of the electron
00000000000000000 with the so-called Im29
O00000O00OOOOOOOOOO f _ it has
0000000000000 000 itself induced on the surfaces
Q0000000000000 of the system is responsible for
Q00000000000 large « self-energy »
OO0000O0O0O0OO corrections to the electronic
O00000O00 structure.
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104



Classical electrostatics (1)

4ze, r*E(r)=—4ze if r<R

out

{4;:5 r’E(r)=-4ze if r

» Gauss theorem for a single electron at the

center of a nanocrystal with radius R and
dielectric constant g, embedded in a
medium with dielectric constant &, :

[ € -dS = 4ar?s(r)E(r) = 47Q, = —47e
S

E()=-——2_ if r<R  |V(r)=———+C if r<R
&l Enl
=
ROEM=——2_if r>R |V()=——-if r>R
Eoutl Eoutl

where C is a constant such that lim V(r)= lim V(r),ie:

e e
=— +—
goutR Ein R

r—R~

r—R"

DSM/DRFMC/SP2M/L_Sim
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Classical electrostatics (I1)

€SP

Sout

V(r)=—i+[i—i]E if r<R

ginr € Eout
® q
V(r)=- if r>R
Eoutl

» The potential created by the electron can be split in two parts V(r) = V,(r)+ V(r),

where :
e
Vo(r)=——
==
(1 1
Vs(r) _ gin Soul
11
gin ‘guut

V,(r) is the potential created in vacuum by

the electron plus its « local » Coulomb
hole.

V(r) is the potential created in vacuum by

the (uniform) image charge distribution at
the surface of the nanocrystal.

DSM/DRFMC/SP2M/L_Sim
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211

105



Classical electrostatics (I11)

(i—iji if r<R
Ein Cout R

&0 - [i-iJf if r>R

& &, r

in out

is actually the potential created in vacuum by a

surface charge density o, = (i - ij
gin goul

e
4mR?

¥ If g, =1, 47R?0, = —e(1-1/g,) is, as expected, the charge expelled from the
Coulomb hole around the electron. In particular, the total charge of the system
(electron + Coulomb hole + surface polarization charges) is —e, so that the
potential outside the nanocrystal is just V (r) = —e/r.

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 212

Classical electrostatics (1V)

N & [1 1J3ifr<R

V=T
Cej (———JE if r>R
Ein Eout

is actually the potential created in vacuum by a

surface charge density o, = [i - LJ%
Ein Eout 4R

t

2 If g, # 1, 47R%0, = —e(1/¢,,; —1/5,) can be seen as the charge q =—e(1-1/g,)
expelled from the Coulomb hole plus a charge g’ = e(1-1/¢,,) brought by the
outer medium to screen the electron. In particular, o,= 0 if &, = &,
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Classical electrostatics (V)

Sout

» Generalization : The potential
created at point r’ by an electron at
point r in a nanocrystal with radius R
and dielectric constant &, embedded
in a medium with dielectric constant
Eout 1S

V(r,r)=V,(r,r)+V(r,r)

where :
e
V,(r,r)=-
b(r I’) Ein‘r_rl‘
V,(r,F)= e 2 (N +1)(&n = o Ir|"r|" Py (cos0)
s\

n=0 i [gout + n(gm + Eout )]

Rz ifr<R andr'<R

P.(x) is the Legendre ploynomial of order n (cf. spherical harmonics).
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The self-energy correction : semi-classical theory (1)

000
000
00000

{9
3

000000000000
000000000000

000000000000
0000000000
00000000

0000000000000 0000
0000000000000 0000
0000000000000 000Q0
0000000000000 000
0000000000000 0
000000000000

000000000

» Let us consider an additional electron at
point r. This electron creates at point r’
a potential :

V(r,r’) = Vb(rar’) + Vs(r,r’)

where V,(r,r’) = —e/g, | r - r’|is the
potential created by the electron plus its
Coulomb hole and V (r,r’) is the
potential created by the surface pola-
rization charges. The latter thus act
back onto the electrons with a potential :

Z(r) =—eV(rr)
A more refined theory where the
electron is introduced « adiabatically »

into the system actually yields :

Z(r) = €V, (r,n)/2

DSM/DRFMC/SP2M/L_Sim
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The self-energy correction : semi-classical theory (11)

Eout

€S9 +

> g

n

+
+

AE
Lowest electron state

Eout = &i

Lowest elgctron state

&,

out < Ein

AE

’ Lowest elgctron state

DSM/DRFMC/SP2M/L_Sim
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The self-energy correction : semi-classical theory (111)
Eout = €in Eout = in Eout < Ein

) +
- +
. +

E AE E
......................................... Lowest elgctron state
.................................... Lowest eldctron state

Lowest electron state

Highest Hole state

Highest ole state
Highest Hole state
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The self-energy correction : semi-classical theory (1V)

The hole feels a potential Z,(r) =—Z(r) !!

AE AE AE

............................... Lowest eldctron state

"""""""""""""""""""""""" Lowest eldctron state

Lowest electron state

Highest Hole state

.................................... Highest hole state

.............................. Highest hole state
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The self-energy potential Z(r) (1)

3 T T T T T T v T r

25 R=1.43nm; &,=7.56; g,=1

=]
T

¥ [eV]
=
wn

1 L L L L L 1 L

r [nm]
» The semi-classical self-energy potential Z(r) is positive inside the nanocrystal...

£.0)=-2v,(rr)- 3 (e, L
¢ 2 ) 2 =0 &in [€out T n(‘("in +goul)]
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The self-energy potential Z.(r) (1)

250 R=143nm; ,=7.56; ¢,=1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
r [nm]

# ...negative outside (the electron polarizes the nanocrystal and attract positive
charges on its side),...
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The self-energy potential Z.(r) (I11)

25 R=1.43nm; &,=7.56; g,=1

1 L L L L L 1 L

r [nm]

# ...and diverges as the electron approaches the image charges at the surface of the
nanocrystal (this divergence actually disappears in a more refined many-body
approach such as the GW approximation).
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First-order perturbation theory (1)

¥ Let:

€S9

#,(r)and ¢, be the lowest electron wavefunction and energy
¢,(r)and &, be the highest hole wavefunct ion and energy

... without self-energy potential. The first-order self-energy corrections read :

{Ee =& +<¢e‘z‘¢8>

E,=¢&, - <(ph ‘Z‘ (ph> where E(r): Z. (r) = _Zh(r)

AE A E
P B Lowest elgctron state Ee
Lowest eldctron state
+3(r)
Highest hole state
gh I E——
......................... Highest Hole state
h
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First-order perturbation theory (I1)

» We can hopefully get a reasonnable approximation for {¢,|Z|¢,) and {¢,|Z|@,) using
an effecive mass ansatz for the wavefunctions ¢,(r) and ¢ (r) :

€SP

8- \\\
o(r)= i}sin[ﬁ r} if r<R N
VR LR : N
o(r)=0if r>R . AN
Then,
R
(o2 @)= J'd3r2(r]go(r)\2 = 4;r_[0 dre(r)e(r)?
where :
Z(I‘):ii (n+1)(gin _gout)rzn
2 n=0 gin EOUt + n(ail'l + EOUI)]RZVHJ
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First-order perturbation theory (ll1)

# This finally yields, in the limit &, + &, >> 1,

eSS {Ee:SeWe 2 where x(r)-3, () =2,(7)

E =&, *<‘/’h ‘Z‘(/7h>

and :
11 1)e? e2 (¢ —¢
(i) =)= 3 - L oar & (fnmtun)
’ ’ 2 &u €n)R &nR\ &1 + &t
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First-order perturbation theory (1V)

1( 1 1 )e? e? -
(@2l @) = (@1 [Zlm) = f[f——J—+ 0.477(Mj

2 Eout  €in R ‘sinR Ein * Eout

# The self-energy corrections open (resp. close) the quasiparticle gap when g, > &,

(resp. &, > &,). They decrease in 1/R, slower than quantum confinement. They
are thus far from negligible in most experimental setups !!

AE AE AE

................... Lowest elgctron state

Lowest eldctron state

Lowest electron state

Highest Hole state

................................... Highest hole state

_______________ Highest hole state

&in < &out &in = &ut &in > Eout
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Application : InAs nanocrystals

2|
d
. o o ST
E 1.3 o
= = o Bandgap energy without
416 By self-energy correction
? o ay
Z o % (8n = %ou)
o &I:l
2 &
g 12 o o
2 O 4o
E | [e] o?
= O
©0
03]
0.8 0. .
(po|Z| @) and (@, |Z| ) for g =1 (peZ|p) and (pyXlg)as,  R=32nm
07 fou=1 0.2 afunction of &, for !
R=3.2nm i
0.6 i
0.15 I
i
=~ 05 -
% Z o |
Ll 04 2 !
0.05 i
0.3 I
I
02 Of= = mmmim ST e
0.1 0.0, :
1 1.5 2 25 3 a5 4 0 5 10 15 20
Radius R (nm) Eout
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[11.2 : The exciton

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

227

113



€S9

€SP

The exciton

» Let us imagine the following experience :

#® We remove one electron from the system, thus leaving a hole with energy .
® We add an electron with energy ¢, far away from the hole.

We then wait for electron-hole recombination [i.e. the system returns to its ground

state] and collect the emitted photon (if any).

Is the energy of the photon hv =gy, —gy?

NO'!

Before recombination the quasi-electron and hole will bind in a lower energy state

called an

DSM/DRFMC/SP2M/L_Sim

The exciton in bulk materials (1)

o0 HO00000000
004 "TOO00OO0O000O0
o 00QO000000000

electron
O0000ONHOOOOOO00O
O000OHLOOOOOOOOO
O
O

@]
000000000©O00000
0000000000 YOO
00000000000 QO
000000000000
8000OOOOOOO
o
@]
o
o

000
000000000000

00
00
00
@0
o)

S8

00000

o0
00 Center of mass 0000

hole
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The electron at r, and the hole at r;,
attract each other with an effective
Coulomb interaction :

e2

w(r,r)=———
(re rh) Er‘re_rh‘

provided |r,—ry| is not too small.

The attraction reduces the energy of
the electron-hole pair by the
« » g, !

hv =gy, — &y — &

The is (in a first
approximation) an hydrogenoid-like
bound state between the electron
and the hole.

DSM/DRFMC/SP2M/L_Sim
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The exciton in bulk materials (11)

» We assume that the independent electron and hole can be described by a single
band effective mass model :
hZ
7ﬂArel//e (re) = (ge - gc)‘//e (re)

*
e

#?
+—=A, )=, —-¢& r
2m; h’//h( h) ( h )‘//h( h)

The solution of these equations are Bloch waves :

_ h2k§ ik, [ _ Koo ]
ge 7gc+ zm* and l//e(re)oce we(re)*l//e(re)<re‘c>me <re‘c>

e

21,2

nk ik, ke
& =8, *ﬁ and y, (r,,) oc e [(Dh(rh) =y, () V) o el <rh‘V>]
h

We now introduce the electron-hole pair energy ¢= ¢, — g and « uncorrelated »
envelope function y(r,, ;) = w.(re) w(r,), which satisfy :
hz

hZ
_TmzAreW(re’rh)_Tm:ArhW(re!rh) =(E_gg}//(re!rh)
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The exciton in bulk materials (1)

» We last switch on the screened Coulomb interaction between the electron and the
hole :

eZ

re_l’h‘

W(re'rh)z_g ‘
r

The electron-hole pair energy ¢ and envelope function y(r,, r,) now satisfy :

hz hz e2
——A r,r)——=A ) ————ylr,n)=l—¢ I,
o A ) = e A ) = () = e e b )

y(r,, rp,) can not be written any more as a product yAr,, ry) = w.(r.) w(r,,) of one
electron and one hole wavefunction. Still, the center of mass motion can be
decoupled from the relative motion of the electron-hole pair. Let us indeed
introduce :

m
r=r.—r r,=R+——"—r
* * me + mh
me mh = *
== = +— =Ty m
e
m, +m, m, +m, rn=R-— =r
m, +m,
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The exciton in bulk materials (1V)

r=r,—r, re:RJri,rmh or
* * me + mh
_mm = n and p(r..5)=vp(R.r)
Tmoamt miam " r=R- -r
» We get :
n?
g SV (RN Arhw(R Zar ‘u/(R N=le-g W RN
hZ m*Z 2
—ﬁﬁARV/(R:r)—forV/(R:r)
2me (me h) 2me
hZ m*Z 2
— e S AR - AWR D) -~ w (R =g p(RT)
2my (m? +my; ‘ |
K m;+m, (1 1 e
— A (RN - —*+—*] VRO - YR = (e W R
2 (me h) 2 . My Sr‘l"
i’ n? 11
- Aw (R === A (R, -——y(R,1) = (s—&, (R,T) where L -1 1
2 me + mh /l ‘ ‘ H me mh
DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 232
The exciton in bulk materials (V)
hZ 2
- R,r R,r R,r)=le-¢ R,r
o )R AR - Hw( )=(e—z, W (R.1)
i 1) = v (R)y(n), E=&+ &y — &

R and r are uncoupled : we can indeed split y(R,r)

€SP

and solve :
2

Rl//m(R) = ngm(R)
2lm, +m;

r'//x( ) ‘ ‘l//x( )_ gxl//x(r)

r

The solution of the center of mass equation is just

’K?
& and R) oc @R
m W ¥n(R)
where K is an arbitrary wavector. The ground-state energy for the center of mass

motion is thus :
233

g2 =0
Quy Nhon, 31/12/2007
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The exciton in bulk materials (V1)

2

h
—ﬁARu/m(R) =én¥n(R)
2\m, +m,

2

n? e
Ce] 77Arl//x (r) ¥« (r) =&Yy (r)
4 zrl

r

» The equation for the relative motion of the electron and hole is similar to the
hamiltonian of the Hydrogen atom, with m, replaced by x and e? replaced by e?/s,.
The ground-state wavefunction and energy for the relative electron-hole motion are
therefore :

s
&) == [the exciton binding energy|

oons!
1 "’ . .
@’(r):—ae e where a, = 82' [the exciton radius]
7, He
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The exciton in bulk materials (VII)

» Summary : The lowest electron-hole pair energy and wavefunction are :

4

—¢&¥ where & = ”g > is the exciton binding energy,
gl’

— 0 0 _
E=Ey+tEn —E =&

2
w(R,r)ece™® wherea, = h 52' is the exciton radius.
e

Alternatively,

—rp|/ay

y(r.r,)oc e

This wavefunction describes a bound electron-hole pair freely moving in the solid.

» Application : The exciton in GaAs.

m, =0.067m,
m, =0.45m, = u" =0.06m,,&’ =6.7meV anda, =9.7 nm
g =11
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The exciton in bulk materials (VIII)

electron
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Confining the exciton

L>>a, L<a,

/
/
! i
/
¥ i
5 i
/ I
% m
i
Q |
;
,
/

Center of mass confinement Laterally squeezed Single-particle
exciton confinement

» When all the dimensions of the system become significantly lower than the bulk
exciton radius a,, the Coulomb interaction can not efficiently couple any more the
motion of the electron and hole because their kinetic energy is too high. Thus,

ore, 1y) = @ (ro)en(ry) [Uncorrelated electron-hole pair]
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The exciton in nanocrystals (1)

# In a nanocrystal, the electron
interacts with the hole and its
cloud of screening charge,
including the polarization
charges at the surface of the
nanocrystal. The effective
electron-hole interaction is
thus :

W(r,r’) = Wy (r,r’) + W(r,r’)

where Wy(r,r?) = —e%/s, | r— v’
and W,(r,r’) is the interaction
with the surface polarization
charges.
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The exciton in nanocrystals (11)

» Since the diameter of the nanocrystals is usually much lower than the bulk exciton
radius a,, we can deal with the electron-hole attraction using first-order
perturbation theory, which amounts to assume :

ore, 1) = @ (r)eu(r,) [Uncorrelated electron-hole pair]

The exciton binding energy then reads :

& =(pWlg)
= [d°r [d°r', (r)e, (r W (r,r)p, (), ()
= [@r[@rp, (0 W(r.r)o, ()

Using again an effective mass ansatz for the wavefunctions ¢,(r) and ¢,(r) :

1 1. |7 |. .
r)= =sinf=r | if r<Rande(r)=0if r>R
o)~ g o] 21 ol0)
as well as:
2 @ _ N
W(r,r')=— € ‘ —ezz(n+1)(g"‘ ou 1 IF] P”(;cﬁe) if r<R andr'<R
gin‘r - r‘ n=0 €in [gout + n(‘gin + goul)]R
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The exciton in nanocrystals (III)

» We finally end up with :

Eout Ein

R

=L

0.79Je2
&= —+— | =

» Application : InAs nanocrystals (g, = 13.6).

1. 05
. Exciton binding energy ~ Sout = ! Exciton binding energy R =3.2nm
' for g, =1 04 as a function of ¢, for
12 R=3.2nm
03
1
3 3
& °8 & 02
05|
0.1
04
02! 0
1 15 2 25 3 35 4 0 5 10 15 20
Radius R (nm) E
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From the tight-binding to the optical gap (I)

¥ Let:

»,(r)and ¢, be the lowest electron wavefunction and energy
Ce] @,(r)and &, be the highest hole wavefunction and energy

... without self-energy potential. The first-order self-energy corrections read :

{E° =& +(0.[Ze.)

£ (o) where 2(r)=2,(r)=-2,(r)

while the first-order excitonic correction read :

&, =fd3rjd3r'

2. (1) W (r,r ), ()

Using effective mass wavefunctions one gets :

11 1) 2 (g, =
<¢e\z\¢e>z<¢h\z\¢h>zf[f_fjiw.ui[mj

2 ¢ R enR\ &, +é&
( 1 o.79Je2
&= —+—|=
Eout Ein R

out  €in out
DSM/DRFMC/SP2M/L_Sim
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From the tight-binding to the optical gap (ll)

# The optical (excitonic) gap is thus :
hv=E,-E, —¢,
a0 = e+ (0. El0) (e, + 0l 2,
=&, — &, + 2{p[Z]p) - &,

1.79¢*  0.94¢’ (.sm = eom)

hv=¢,—¢,+
&qR &nR

Ein t&

out

hv = AE
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The End
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Solution R =10 nm, V, = 0.3 eV, m* = 0.07m,

008 Solution V, = 0.3 eV

T — L —k=0.0276 A1, £ = 41 meV
0.077

~
0.067
0.057
o)
A
<< 0.047
N
(en
0.037
002 Solution V, = +oo
k=0.0314 A1, £ =54 meV
0.017
0.00 T T T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
k (A1)
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Graphene bands
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