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Part II

Electronic structure methods
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Outline

II.1 :

The ab initio density functional theory

II.2 : 

The semi-empirical tight-binding method

II.3 : 

The k·p approximation
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II.1 : The ab initio density functional theory
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The many-particle hamiltonian…

We do not live in a non-interacting world !..

The hamiltonian of the N-electron system actually reads :

The ground-state wavefunction 0(r1, r2, ..., rN) is not a single-Slater determinant !

The ground-state density reads :
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The Hohenberg-Kohn theorem 

Obviously,

There is a one to one correspondance between the one-body potential v(r) and the 

ground-state density n(r).

As a consequence, the ground-state energy :

can either be considered as a functional of the one-body potential v(r) or of the 

ground-state density n(r).

     rrrrr nv N  ,...,, 210 Hohenberg-Kohn Theorem

[Phys. Rev. B 136, B864 (1964)]

   nEvEHE GSGSN  00
ˆ
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The variational principle

EGS[n] can be split as follows :

Let us now introduce :

as a functional of n for a given one-body potential v.

E[n,v] has minimum E[nv,v] = EGS[nv] when n(r) is the ground-state density nv(r)

corresponding to v(r) [otherwise there would exist a 0 with energy lower

than the ground-state energy !!].
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The Hohenberg-Kohn theorem : Proof

Proof ad absurdum. Let us assume that :

the potential v(r) with ground-state wavefunction 0(r1, r2, ..., rN),

and :

the potential v’(r) with ground-state wavefunction 0’(r1, r2, ..., rN)

give rise to the same density n(r).

Let :

be the corresponding ground-state energies.

First, 0(r1, r2, ..., rN) and 0’(r1, r2, ..., rN) must be different (unless v-v’ is a 

constant) because they satisfy different Schrödinger equations.

0000
ˆˆ  NN HEHE  and 
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The Hohenberg-Kohn theorem : Proof

Proof ad absurdum. Let us assume that :

the potential v(r) with ground-state wavefunction 0(r1, r2, ..., rN),

and :

the potential v’(r) with ground-state wavefunction 0’(r1, r2, ..., rN)

give rise to the same density n(r).

Let :

be the corresponding ground-state energies.

Then (variational principle on the wavefunction),

Likewise,
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The Hohenberg-Kohn theorem also holds for non-interacting electrons in a one-

body potential vs(r) :

Variational principle : Es[n,vs] is minimum when n(r) is the GS density for vs(r).

Although this equation looks very complicated, we know its solution !
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The Kohn-Sham equations (I)

Back to the interacting electrons problem…

E can further be split as follows :

Exc[n] is the so-called « exchange-correlation » energy, that accounts for :

The Coulomb interactions beyond the mean-field (Hartree) approximation.

The increase of kinetic energy due to these interactions (T-Ts).
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The Kohn-Sham equations (II)

Variational principle : E[n,v] is minimum when n(r) is the GS density for v(r) .

This last equation is the same as the one found for non-interacting electrons in a 

one-body potential vKS(r) !!
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The Kohn-Sham equations (III)

The ground-state density n(r) satisfies :

where :

Note : The Hartree and exchange-correlation potentials depend on the density !!

These equations must be solved « self-consistently ».
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The local density approximation (I)

We know everything, except Exc[n] !!

This is an unknown and incredibly complex functional !!

We must therefore choose approximations at this stage.

The simplest, yet most widely useed approximation is the so-called « local 

density approximation (LDA) ».

It assumes that the electrons behave locally as a homogeneous electron gas :

where xc(n) is the exchange-correlation energy per particle of a homogeneous 

electron gas with density n. The LDA exchange-correlation potential is :
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The local density approximation (II)

xc(n) has been tabulated using « Quantum Monte Carlo » methods.
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The local density approximation only works (in principle) for almost homogeneous 

electron systems. Yet it is accurate enough (in practice) for many solids and 

molecules !!

Beyond the LDA :

The « Generalized Gradient Approximation (GGA) » :

Still a (semi-)local functional…

Non-local functionals (« Exact exchange » and beyond) : 

More accurate, but also much more expensive… Still being explored…

        ,...,3
rrrr nnndnE xcxc   

Beyond the local density approximation
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What can be computed with DFT ?

Ground-state energy of solids and molecules.

Ground-state density.

Derivatives of the ground-state energies :

Forces                         Structural relaxation and optimization.

Dynamical matrices                             Vibrations modes (phonons).

Linear (or higher order) response coefficients : 

Polarizabilities (P = aE), piezoelectric constants, etc…
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Example : GeMn structure (I)

GeMn is a « diluted magnetic semi-conductor ».

It is ferromagnetic at T < 400 K  Applications for « spintronic ».

Mn forms nanocolumns when inserted in a Ge matrix.

What is the structure of

these nanocolumns ?
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Ab initio simulation of a

periodic 64 atoms box :

Wavefunctions expanded

in plane waves
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Example : GeMn structure (II)

Formation energies (FE) : 

Tetrahedral interstitial

FE = +1.5 eV

Split-vacancy

FE = -0.2 eV

Substitutional

FE = 0 eV

EXAFS None of these defects 

reproduce the distances & 

coodinations !

1 Mn in a 64-site box = 1.6 % 

much lower than exp. conc.

Increase the number of Mn 

in the box !



36

71DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Example : GeMn structure (III)

FE does not 

decrease with [Mn] !!

What about clusters ?

# of Mn

[Mn]

1 2 3

1.6 % 3.1 % 4.7 %

1.5 eV1.5 eV 1.5 eV

0.3 eV 0.5 eV0 eV

-0.2 eV 0.5 eV -F
o

rm
a

ti
o

n
 E

n
e

rg
y
 (

F
E

) 

Formation Energy (eV/Mn) as a function of [Mn] for isolated defects
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Example : GeMn structure (IV)

Interstitial cluster

FE = 0.4 eV

Vacancy cluster

FE = 0.3 eV

Structure of Mn-rich GeMn nanocolumns : A combined EXAFS and ab initio calculations study.
E. Arras et al., submitted to PRL.

EXAFS Distances and coordinations 

well reproduced by the 

vacancy cluster.

These tetrahedra are the 

building blocks of Mn5Ge3 & 

Mn8Ge11 (known to be 

stable).
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Example : GeMn structure (V)

Mn5Ge3

Possible chessboard-like structure

of GeMn columns ?
Bridged tetrahedron
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Doping of small 110-oriented, unpassivated Si nanowires :

The dopants prefer being at the surface where they are electrically inactive !..

Example : Doping silicon nanowires (I)

Si(001)-2x1 Wire a Wire b Wire c

B -0.7 eV -0.03 eV -0.14 eV -0.99 eV

P -1.08 eV -0.98 eV -1.05 eV -1.10 eV

Wire a Wire b Wire c

Surface segregation energies

X. Blase, …

Surface segregation and backscattering in doped silicon nanowires,

M.V. Fernandez-Serra, Ch. Adessi and X. Blase, Phys. Rev. Lett. 96, 166805 (2006).
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Example : Doping silicon nanowires (II)

In perfectly passivated nanowires : No clear tendency for surface diffusion. 

As many surface traps as impurities for wires up to several nanometers in 

diameter !!

B -0.99 eV

P -1.62 eV

Segregation energy 

at Pb defect

>1012 cm-2 dangling bond (Pb) defects at Si/SiO2 interface

1018-1019 cm-3 dopants in bulk (nMott (P:Si)=3x1018 cm-3 )

But :

Surface segregation and backscattering in doped silicon nanowires,

M.V. Fernandez-Serra, Ch. Adessi and X. Blase, Phys. Rev. Lett. 96, 166805 (2006).
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DFT in crystals

A crystal is a periodic structure characterized by its unit cell and lattice 

vectors a1, a2, a3. Example in 2D :

The potential v(r) is periodic in a crystal :
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Bloch‟s theorem

Bloch’s theorem : The one-particle wavefunctions (r) in a periodic potential v(r)

can be split as follows :

k is a (wave)vector and n is an integer. The one-particle energies nk can thus be 

sorted into « bands » (same n, different k) :
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The reciprocal lattice (I)

Let us introduce the following vectors :

Then,

and, in general,
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The reciprocal lattice (II)

The reciprocal lattice is the lattice of G vectors defined by :

Then for any R  n1a1  n2a2  n3a3, (n1, n2, n3) Z3,
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The first Brillouin zone (I)

The band structure is periodic in reciprocal space.

Let us indeed consider a one-particle wavefunction nk(r) with energy nk and a 

lattice vector G  0 :

We may as well write :

Then for any R  n1a1  n2a2  n3a3, (n1, n2, n3) Z3,

As a consequence, nk(r) and nk are also one-particle wavefunction and energy for 

k’  k  G.

The band structure has the periodicity of the reciprocal lattice !
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The first Brillouin zone (II)

We thus only need to compute the band structure in an elementary unit cell around 

k  0. We define the first Brillouin zone (FBZ) as the set of k„s that is closer to 

G  0 than to any other reciprocal lattice point.

Example in 2D : 

The reciprocal space can indeed be covered with FBZ-like tiles translated along b1

and b2.

b1

b2
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Crystal structure

Most usual semiconductors crystallize in the cubic Diamond/Zinc-Blende

structure. 

Alloys can also be synthetized, e.g. In0.8Ga0.2As.

One FCC sublattice is occupied by the In/Ga atoms (80% In+20% Ga ~ randomly 

distributed), the other by the As atoms.

It is a face-centered cubic (FCC) 

lattice with a two atom unit cell :

– one at (0,0,0).

– the other at  a(1,1,1)/4.

In the Zinc-Blende structure, each 

FCC sublattice is occupied by a 

different atom (e.g. Ga/As, In/P).

In the Diamond structure, the two 

sublattices are occupied by the 

same atom (e.g. Si, Ge, C).
x

y

z

a
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Reciprocal lattice
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b

b
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a

a

a The reciprocal of a face-centered cubic

lattice with side a is a body-centered 

cubic lattice with side 2/a. 

The first Brillouin zone is the above 

truncated octahedron. 
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Direct vs indirect bandgap materials

GaAs : Direct bandgap material (the valence band maximum and conduction

band minimum lie at the same k point).

Si : Indirect bandgap material (the valence band maximum and conduction

band minima lie at different k points).

Bulk Si can not emit light !
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Why bulk Si can not emit light…

Optical transitions must preserve :

Energy : hv  hc/l  Eg.

l is in the mm range for typical bandgap energies Eg ~ eV.

Momentum : k  2/l.

But l << a  k << 2/a.

Optical transitions are quasi-vertical in reciprocal space !!

A photon with wavelength l has :

– Energy E  hv  hc/l

– Momentum k  2/l

a

2

(k, E)
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The DFT band structure (I)

Kohn-Sham equations :

In principle, the Kohn-Sham energies have no physical meaning…

Let us have a look anyway at the LDA band structure of silicon…
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The DFT band structure (II)

The LDA band structure of silicon 

is rather good, but misses one 

of the most important feature : 

the bandgap energy. The latter 

is ~0.5 eV too small.

The DFT is a ground-state 

theory !

What are single particle 

wavefunctions and energies in an 

interacting system ?
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Interacting systems : « Quasi-electrons » (I)

Let us add an electron to an otherwise neutral solid...

The electron plus its Coulomb hole is called a « quasi-electron ».

Coulomb holeIon cores

This electron repells nearby 

valence electrons, thus leaving 

partially « naked » ion cores 

around him.

The electron is thus « clothed » 

by a cloud of positive charges 

(also known as a Coulomb hole) 

that screens its interactions with 

the other particles. This Coulomb 

hole follows the electron 

travelling in the solid.
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Interacting systems : « Quasi-electrons » (II)

Let us add an electron to an otherwise neutral solid...

Far enough from the quasi-electron at r, 

Coulomb holeIon cores
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Interacting systems : « Quasi-holes » (I)

Let us remove an electron from an otherwise neutral solid...

The hole plus its cloud of electrons is called a « quasi-hole ».

Ion cores

This leaves a positive charge 

(hole) in the solid that gets 

surrounded by a cloud of 

valence electrons.

This cloud of electrons is 

dragged by the hole as it 

moves in the solid.
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Interacting systems : « Quasi-holes » (II)

Let us remove an electron from an otherwise neutral solid...

Far enough from the quasi-hole at r, 

Ion cores
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The quasiparticle equation (I)

Can we still describe the dynamics of quasi-electrons and quasi-holes with one-

particle wavefunctions ?

i.e., looking on the quasi-electron side : 

Can we find one-particle energies En and one-particle wavefunctions n(r)

such that :

– |n(r)|2 is the probability to find the electron at r.

– E0(N)En is the energy of the (N1)-electron system ?

or, looking on the quasi-hole side : 

Can we find one-particle energies En and one-particle wavefunctions n(r)

such that :

– |n(r)|2 is the probability to find the hole at r.

– E0(N)En is the energy of the (N1)-electron system ?

The answer is yes, but with conditions.
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The quasiparticle equation (II)

The quasiparticle wavefunctions and energies can be shown to satisfy the so-

called quasiparticle equation :

where :

v(r) is the « external » (ionic) potential.

is the average potential created by the ground-state

electron density (also known as the Hartree potential).

xc(r, r’;En) is the « self-energy ». It describes how valence electrons 

dynamically act back onto the additional electron/hole at r.

The self-energy is an incredibly complex operator. Approximations can be  found 

within many-body perturbation theory (e.g., the « GW » method).
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The quasiparticle equation :

is a Schrödinger-like equation whose effective potential xc(r, r’;En) is :

Non-local (depends on both r and r’). 

The range of the self-energy is of the order of the Coulomb hole size (~ 2 Å) in 

solids. But see later discussion in nanostructures !

Complex and energy dependent. 

As a consequence, the quasiparticle « hamiltonian » is not hermitian and the 

quasiparticle energies are complex numbers.

What does that mean ??

The quasiparticle equation (III)

En = n ± iGn
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The quasiparticle lifetime

Quasiparticles have a finite lifetime n ~ 1/Gn :

The quasiparticles decay into other many-body excitations... They propagate as 

single particles only on « short » time scales  << n.

How long is n ?? 
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Back to the quasiparticle lifetime...

Quasiparticle lifetime in bulk Si, as calculated with the so-called GW method :

The quasiparticle lifetime diverges at the conduction and valence band edges !

There are well defined, long-lived quasiparticles around the gap.
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The quasiparticle band structure of a solid

Bloch theorem still applies. In a solid, the quasiparticle wavefunctions and energies 

can be labelled with a wavevector k and a band index n :

Bandgap

E
n
e
rg

y 
(e

V
)

k vector

Quasi-electron bands

« Conduction bands »

Quasi-hole bands

« Valence bands »
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Most of the interesting physics takes place around the gap...

Let us now forget about :

finite quasiparticle lifetimes...

self-energy non-locality...

and assume that we can find a local potential vself(r) that yields the same 

quasiparticle wavefunctions and energies as the self-energy operator xc(r, r’;En) at 

least around the gap :

where veff(r)  v(r)  vh(r)  vself(r). 
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II.2 : The semi-empirical tight-binding method
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Introduction

Write the wavefunctions as linear combination of atomic orbitals (LCAO) :

where a(r  Ri) is an orbital of kind a centered on atom i with position Ri. For 

example,

– a  1  1s

– a  2  2s

– a  3  2px

– a  4  2py

– a  5  2pz

– …

Which orbitals to choose ?
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Which orbitals to choose ? (I)

EE

1s

2s
2p

3s

3p

3d

4s

1s band

2s, 2p bands

Mostly 3s, 3p

bonding

Mostly 3s, 3p

antibonding

Si atom Bulk Si

Bandgap

sp3 bonding
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Which orbitals to choose ? (II)

Possible choices for Si :

sp3 tight-binding model : quite accurate for the valence bands, somewhat 

less for the conduction bands, especially at high energy.

sp3d5 tight-binding  model : accurate valence bands, pretty good conduction 

bands.

sp3d5s* tight-binding model : accurate valence and conduction bands.

Si 3s 3p

3d
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Application to nanocrystals and quantum dots (I)

Write the wavefunctions as linear combination of atomic orbitals (LCAO) :

where a(r  Ri) is an orbital of type a centered on atom i with position Ri. 

Hence :
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Application to nanocrystals and quantum dots (II)

We then project onto (r  Rj) :

where :

Haa(Ri, Ri) is an « on-site » energy while Ha(Ri, Rj) is a « hopping » matrix 

element.

   
  


N

i

n

ii

N

i

n

ii

orborb

chch
1 11 1 a

aa
a

aa  RrRr

     

     

       jScHch

jc

hch

N

i

n

iji

N

i

n

ijij

N

i

n

iji

N

i

n

ijij

orborb

orb

orb

,,,

,

1 11 1

1 1

1 1







a
aa

a
aa

a
aa

a
aa













  

 

 

 

 

RRRRRr

RrRr

RrRrRr



53

105DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Application to nanocrystals and quantum dots (III)

We then project onto (r  Rj) :

We last define the following n x n matrices (n  N  norb) :

and the vector     with coordinates cia. We thus end up with :
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Further simplifications…

What we need :

Haa(Ri, Ri) is an « on-site » energy while Ha(Ri, Rj) is a « hopping » matrix 

element.

We can use symmetries and make further approximations to reduce the number of 

matrix elements to compute : 

Finite range tight-binding models.

Orthogonal/non-orthogonal tight-binding models.

Two/three centers tight-binding models.
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The use of symmetries (I)

These hamiltonian and overlap matrix elements are equal by symmetry…
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The use of symmetries (II)

These hamiltonian and overlap matrix elements are opposite by symmetry…
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The use of symmetries (III)

These hamiltonian and overlap matrix elements are zero by symmetry…
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Finite range tight-binding models

Atomic orbitals decay exponentially far enough from the nucleus :

As a consequence, the hamiltonian and overlap matrix elements decrease very 

fast with Ri  Rj.

Assume zero hamiltonian and overlap matrix elements beyond first, second 

or third nearest neighbors.  
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Orthogonal tight-binding models (I)

The atomic orbitals may be split into a radial and an angular part :

Different orbitals on the same atom are orthogonal (because their ang. parts are) :  

The Ra‟s of the free atoms are neither the only possible nor the best choice for the 

radial parts. In particular, we may try to tune the Ra(r)‟s so as to minimize the 

overlaps between neighboring orbitals while retaining their overall free atom-like 

shapes, thus achieving :

We are back to a simpler standard eigenvalue problem :

      aaa   iiiiS RrRrRR ,

      ]ˆˆ[          , ISRrRrRR  aaa  ijjijiS

     


...,,

,

dps

mlYrR

harmonic Sphericalpart Radial


aaaa r

 ˆˆˆ ccH  [Orthogonal tight-binding model]
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Orthogonal tight-binding models (II)

Beware : negligible overlap matrix elements does not mean that neighboring 

orbitals do not interpenetrate !!

On the contrary, making the orbitals quasi-orthogonal add wiggles that usually 

increase the range of the model. 

      0,  jijiS RrRrRR aa 

+ --
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Let :

Then,

Keep : 

Part or all k  i and k  j terms : « Three center tight-binding model ».

Only the (most important) k  i or k  j terms : « Two center tight-binding 
model ».
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Two center tight-binding models (I)
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Two center tight-binding models (II)

     

     
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Advantages of the two-center approximation :

The tight-binding matrix elements only depend on a few “Slater-Koster 
parameters” (e.g. Vsp).

Explicit angular dependence (through the cosine directors l, m and n).

Complete separation between the angular and interatomic distance 
dependences.
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Application to crystalline solids (I)

In a crystalline solid, any atomic position Ri can be split in two parts :

x

y

z

a

Example : The Diamond/Zinc-Blende 

crystal structure is a face-centered 

cubic (FCC) lattice with a two atom unit 

cell (nc  2) :

– one at d1  (0,0,0) [e.g. Ga].

– the other at d2  (1,1,1) a/4 [e.g. As].
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Application to crystalline solids (II)

Bloch’s theorem : 

As a consequence,

However,

     
 

 
  


3,, 1 11

~

Zlkj

n

p

n

pjkljklm

i

n

ii

c orborb

cc
a

aa
a

aa  dRrRrr

            3
321 ,, Zwvuuwvuuue nnn

i
n         where raaarrrr kkk

rk

k

             3
~~ˆ

,,
~~

Zwvueueeue n

i

n
ii

uvwn

i

uvwn
uvwuvwuvw 

     rrRrRr k

Rk

k

rkRk

k

Rrk

k 

     
 

      
 

       
 

 

 

 

  



  



  







3

3

3

,, 1 1

,, 1 1

,, 1 1

~

~

~~~

Zlkj

n

p

n

pjklpwlvkuj

Zlkj

n

p

n

pwlvkujjklp

Zlkj

n

p

n

pjkluvwjklpuvwn

c orb

c orb

c orb

nc

nc

nc

a
aa

a
aa

a
aa







dRrk

dRrk

dRRrkRrk

118DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Hence,

Since the LCAO expansion must be unique,

Finally,

Application to crystalline solids (III)
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Application to crystalline solids (IV)

Let :

We get :

We then project onto

  kkkr r nnneff hv
m

h     ,
2 0

2

     
 

     
 

 

 

  



  







c orb
pjkl

c orb
pjkl

n

p

n

Zlkj

pjkl

i

pnnn

n

p

n

Zlkj

pjkl

i

pn

enb

henbh

1 1 ,,

~

1 1 ,,

~

3

3

~

~

a
aa

a
aa





dRrk

dRrk

dRk

kkk

dRk

k

       
 

       
 

 



a
aa

a
aa

,
~~

~~

1 1 ,,

000

~~

1 1 ,,

000

~~

3

000

3

000

qenb

henb

c orb
qpjkl

c orb
qpjkl

n

p

n

Zlkj

pjklq

i

pn

n

p

n

Zlkj

pjklq

i

p





 

 

  



  



       dRrdRrk

dRrdRrk

ddRRk

k

ddRRk

    : q

i qe dRr
dRk




000

~ ~000



120DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Let us define :

We get :
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Application to crystalline solids (V)
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Application to crystalline solids (VI)

We last define the following nb x nb matrices (nb  ncnorb) :

and the vector        with coordinates bpa(nk). We thus end up with : 

We solve this generalized eigenvalue problem and get nb  ncnorb bands (see 

examples in next slides).
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The semi-empirical tight-binding method

What we need :

« Semi-empirical » tight-binding : 

Consider these matrix elements as adjustable parameters…

…fitted on the experimental or ab initio (corrected DFT/GW) bulk band 

structures.

Use the same matrix elements in nanostructures (« transferabilty »).

Transferability assumes that the effective potential created by each atom is the 

same in bulk and nanostructures.
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G GX W L K X
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ab initio

 Exp. TB  

CB effective mass 

m* 0.023 0.023 m0 

VB Luttinger paremeters 

1 19.70 19.50  

2 8.40 8.42  

3 9.28 9.20  

 

InAs

Fitting tight-binding parameters (I)

Fit the tight-binding parameters onto selected experimental or « ab initio » band 

energies and effective masses.
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InAs

Fitting tight-binding parameters (II)

Minimize the squared error with respect to the tight-binding parameters :

ank and i are weighting coefficients and k0 is an arbitrary wavevector (for 

consistency & overall weighting of the masses with respect to the band energies).
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Third nearest neighbors, three centers orthogonal sp3 tight-binding model for Si :

Example : Esx(220) = Hamiltonian matrix element between a s orbital at (0,0,0) and 

a px orbital at (2,2,0)a/4.  is the spin-orbit coupling parameter.

Atomic orbitals remain unknown !!

x

y

z

a

Fitting tight-binding parameters (III)

Y. M. Niquet et al., Phys. Rev. B 62, 5109 (2000)
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Comparison between a sp3 and a sp3d5s* model for Si

Y. M. Niquet et al., Phys. Rev. B 62, 5109 (2000)

Third nearest neighbors orthogonal sp3 model Nearest neighbors orthogonal sp3d5s* model

J. M. Jancu et al., Phys. Rev. B 57, 6493 (1998)

GW = « ab initio » method (no 

adjustable paremeters).

The sp3d5s* model provides a 

better description (especially on 

the conduction band side), but at 

a higher computational cost.



64

128DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Application to nanocrystals and quantum dots (I)

Write the wavefunctions as linear combination of atomic orbitals (LCAO) :

where a(r  Ri) is an orbital of type a centered on atom i with position Ri. 

We get :
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Application to nanocrystals and quantum dots (II)

We then project onto (r  Rj) :

We last define the following n x n matrices (n  N  norb) :

and the vector     with coordinates cia. We thus end up with :
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 models binding-tight orthogonal for   IScScH ˆˆˆˆˆˆ  
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Numerical issues

H and S are large n x n matrices (n  N  norb). It is not possible to solve this 

eigenvalue problem using standard libraries (e.g., Lapack).

H and S are however sparse matrices : most of the elements are zero because 

atoms only interact with their nearest neighbors. The matrix-vector products (Hc

and Sc) can thus be implemented very efficiently : only the position and value of 

the non-zero elements of H and S need to be stored in memory.

A few wavefunctions and energies can then be computed around the gap using an 

iterative diagonalization technique : a trial vector is updated step by step until it has 

become an eigenstate of H. Each optimization step only requires one or more Hc / 

Sc products (no explicit transformations on H and S) :

Lanczos,

Conjugate gradients,

Jacobi-Davidson…

10-50 eigenstates of H can be computed in few hours for ~ 10 000 000 orbitals or 

more.

 models binding-tight orthogonal for   IScScH ˆˆˆˆˆˆ  
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Application : Confinement in Si nanocrystals (I)

Spherical Si nanocrystals 

with diameter d

Cubic Si nanocrystals with 

side a and « effective » 

diameter d such that :

3

3

23

4
a

d











The dangling bonds at the surface of the nanocrystals are saturated with H atoms.



66

132DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Diameter (nm)
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Application : Confinement in Si nanocrystals (II)

Lowest electron level |(r)|2

Diameter (nm)

L
o
w

es
t 

el
ec

tr
o
n
 e

n
er

g
y

(e
V

)
Third nearest neighbors

orthogonal sp3 model

Y. M. Niquet et al., Phys. Rev. B 62, 5109 (2000)

Lowest 

electron level

Highest 

hole level

E

r
Bulk bandgap 

Eg = 1.17 eV
0

1.17 eV
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Application : Confinement in Si nanocrystals (III)

Comparison between a third nearest neighbors orthogonal sp3 tight-binding (TB) 

model, a nearest neighbors orthogonal sp3d5s* TB model, the semi-empirical 

pseudopotential (PP) method [the wavefunction is expanded in plane waves 

instead of atomic orbitals] and the ab initio local density approximation (LDA).

Note : The LDA is wrong on Eg, but is believed to be ~ OK on Eg !

   

  eV 17.1Sibulk  where

 Sibulk 0





g

ggg

E

EdEE
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Application : Nanowire heterostructures (I)

Vapor-Liquid-Solid (VLS) growth :

W
. 
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t 
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l.
, 

P
N

A
S

. 
1
0
2
, 
1
0
0
4
6
 (

2
0
0
5
)

M. T. Björk et al., Appl. Phys. Lett. 80, 1058 (2002)

Nanowire

heterostructure

Au droplet

In & As 

gazeous 

precursors

Switch to 

InP...
InAs 

nanowire 

growth

Back to 

InAs...

Overgrowth 

of a shell

Substrate
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Application : Nanowire heterostructures (II)

Large interest in nanowire « heterostructures » for optics & transport :

Strain relaxation is believed to be efficient in these structures, likely allowing 

the growth of thick lattice mismatched layers.

A few issues :

What is the effect of strain relaxation on the electronic properties of 

nanowire heterostructures ? 

What is the effect of an overgrown shell ?
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M. T. Björk et al., Appl. Phys. Lett. 80, 1058 (2002)

Nanowire

heterostructure
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Application : Nanowire heterostructures (III)

The bond length is 6.7% shorter in GaAs than in InAs. The InAs layer is thus 

compressed by the GaAs core, but can partly relax strains at the surface of 

the nanowire.

The GaAs shell move surface traps away from the InAs layer, but prevents 

strain relaxation.

GaAs

InAs

 20 nm

4 nm

 24 nm

4 nm
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Application : Nanowire heterostructures (IV)

Assuming coherent growth, strain relaxation can be computed using Keating's 

Valence Force Field model :

Bond stretching 
constant a

Bond bending 
constant 
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Application : Nanowire heterostructures (V)

We need to account for the dependence on the tight-binding parameters on the 

atomic positions.

For two center tight-binding models :

where :

d0 is the equilibrium bond length and asp is an exponent (around 2).
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Application : Nanowire heterostructures (VI)

Strain relaxation is very efficient in core-only heterostructures. The InAs layer 

protrudes outwards and distorts the surface of the nanowire. The strain distribution 

is however very inhomogeneous : the surface is overrelaxed while the center of 

the InAs layer is still significantly compressed.

The GaAs shell limits strain relief in the InAs layer. The strain distribution is 

however much more homogeneous. 

Core/shellCore
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Application : Nanowire heterostructures (VII)

Strain relaxation in core-only heterostructures digs a well in the conduction band

at the surface of the nanowire !

Core/shellCore

 zzyyxxccc aaE 


 




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Application : Nanowire heterostructures (VIII)

The electron (E1) is trapped near the surface of the nanowire by the 

inhomogeneous strain relaxation.

No significant overlap between H1 and E1 !!

H1 E = -0.011 eV E1 E = 0.946 eV
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Application : Nanowire heterostructures (IX)

Both particles are now well confined in the InAs layer.

Large overlap between H1 and E1.

H1 E = 0.025 eV E1 E = 1.051 eV
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Application : Wavefunction imaging (I)

The sample is cleaved (cut in two pieces along a crystallographic plane). The 

cleavage plane goes through some InAs quantum dots, that show on the surface 

of the sample.

The cleavage plane is then imaged with a scanning tunneling microscope (STM). 

The InAs dots appear as bright spots, that tend to align along columns.

InAs/GaAs quantum dots
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Application : Wavefunction imaging (II)

The current flowing through the tip 

is plotted as a function of the tip 

position (at constant tip-sample 

distance). This roughly provides an 

image of the wavefunctions of the 

levels the electrons are tunneling 

onto.

V = 0.69 V : The electrons can 

only tunnel onto the lowest level.

Lowest electron level |(r)|2

Nearest neighbors orthogonal sp3d5s* model
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Application : Wavefunction imaging (III)

Lowest electron level |(r)|2

Nearest neighbors orthogonal sp3d5s* model

Second electron level |(r)|2

V = 0.82 V : The electrons can 

tunnel onto the first two levels.
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Application : Tunneling spectroscopy (I)

Eg+2 UVB+U

CB+U

U. Banin et al., Nature 400, 542 (1999).

Diameter 6.4 nm

tip substratenanocrystal

1Pe 6

1Se 2

1VB 4

42VB
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Eg+2 UVB+U

CB+U

U. Banin et al., Nature 400, 542 (1999).

Diameter 6.4 nm

Applications : Tunneling spectroscopy (II)

tip substratenanocrystal

1Pe 6

1Se 2

1VB 4

42VB
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Eg+2 UVB+U

CB+U

U. Banin et al., Nature 400, 542 (1999).

Diameter 6.4 nm

Applications : Tunneling spectroscopy (III)

+U

U : Addition energy

tip substratenanocrystal

1Pe 6

1Se 2

1VB 4

42VB
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Eg+2 UVB+U

CB+U

U. Banin et al., Nature 400, 542 (1999).

Diameter 6.4 nm

Applications : Tunneling spectroscopy (IV)

tip substratenanocrystal

1Pe 6

1Se 2

1VB 4

42VB
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Eg+2 UVB+U

CB+U

U. Banin et al., Nature 400, 542 (1999).

Diameter 6.4 nm

Applications : Tunneling spectroscopy (V)

tip substratenanocrystal

1Pe 6

1Se 2

1VB 4

42VB
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Applications : Tunneling spectroscopy (VI)

Diameter 6.4 nm

Second nearest-neighbors orthogonal sp3 model
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Applications : Tunneling spectroscopy (VII)

The calculated bandgap 

energies and electron levels 

splittings are in very good 

agreement with the experiment.

Controversy about the 

interpretation of VB.

1Pe 6

1Se 2

1VB 4

42VB

CB

VB

Eg
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Applications : Tunneling spectroscopy (VIII)

Density 3 e– @ V = 1 V

Density 3 h @ V = – 1 V

Diameter 6.4 nm

Nanocrystal

STM tip

Au substrate

Electrostatic potential bias V = 1 V

We have computed the full I(V)

curve using the so-called 

orthodox theory.

Electron-electron interactions 

were taken into account self-

consistently.
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Applications : Tunneling spectroscopy (IX)

Injection of both electrons and holes at high enough positive or negative bias.

Measurement of VB practically impossible.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

V (V)

G
 =

 d
I/

d
V

 (
u

.a
.)

Theory

Experiment

Diameter 6.4 nm

1Se

1Pe + 1VB + ...

1VB

1,2VB + 1Se

2VB + 1Pe

Y. M. Niquet et al., Phys. Rev. B 64, 113305 (2001)

tip substratenanocrystal

1Pe 6

1Se

1VB 4

42VB

2

DSM/DRFMC/SP2M/L_Sim 155Quy Nhon, 31/12/2007

II.3 : The k·p approximation
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From the atom to the solid (I)

1 H

2 H

4 H

E

Bonding

Antibonding

E

Most bonding

Most antibonding
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From the atom to the solid (II)

N H

Solid

E

f

Continuum

of levels

(« band »)
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The case of bulk semiconductors (I)

EE

1s

2s
2p

3s

3p

3d

4s

1s band

2s, 2p bands

Mostly 3s, 3p

bonding

Mostly 3s, 3p

antibonding

Si atom Bulk Si

Bandgap

sp3 bonding
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The case of bulk semiconductors (II)
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The equation for the periodic part of Bloch waves (II)

One equation for each k. 

The solutions must be chosen periodic with the real space lattice :

Periodic boundary conditions on unit cell volume 0  discrete spectrum (bands).
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k·p theory in bulk solids (I)

Let us assume that we were (hardly !) able to solve this equation for a k point of 

utmost interest (e.g. k  0) :
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We now want to get the lowest 

conduction band energy 5k

around k  0 without having to do 

this laborious calculation again 

for each k…
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What we know :

What we want :

What to do :

The k·p term is the only one that changes u50 (r) into u5k (r) !

We are only interested in small k‟s.

The conduction band 5k is well separated from the others.

Treat the k·p term in perturbation !!
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First-order perturbation theory

We get at once :

Far from the actual result !!

0
55

0

5

0

22

5
2 

 000k pk
k

uu
mm




 

e,consequenc a As

periodic    However, 0pr 0r0000 
 00

55555 uuiuuu 

band) electron (Free  
0

22

55
2m

k
0k


 

165DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

 



















5 5

2

5

2
00

**

22

55

5

222

5

*
55

2
0

2

0

22

55

0211

2

2

n n

zn

n

zyx

n

z
n

z
n

upu

mmmm

kkk 
ππ

mm

00

00

0k

00

0k

k

k







     where

 





Second-order perturbation theory (I)

Let us proceed with second-order perturbation theory :

It can be shown that for symmetry reasons (only for the lowest conduction band at 

k  0 in direct gap semiconductors !) :

The a   terms cancel each other.

The remaining a   terms are all equal.
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The effective mass

Free-electron-like band with an effective mass m* :
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Only works well around k  0.

This is just second order 

perturbation theory !

Lower m*  more dispersive 

band ! 

Practically m*

is known from, 

e.g., cyclotron 

resonance 

experiments.
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The first-order u5k

First-order perturbation theory (for the wavefunction) :

As a consequence,

            where
0

5

5

5

5

5

0

55 


 



 000

00

0k pπr
πk

rr uuu
m

uu n

n

nn

n

n





 '1

'
1

''

0

0

00

000

5'5

5 5

5

5

*
5

2
0

2

5'5

5 5 5 5

5

5

*
5

2
0

2

0

5

5

*
5

0

5
0

5

5

5

0
1

555'5

kkOuu

m
uu

uu
m

uu
m

uu
m

uuuu

n n

n

n

m

n n m
δ

nm

n

n

m

n
n

n

n

n

n

n

n

nm




































  







 



kk

0000

kk

00

0000

00

00

00

00

00kk

πkπk

πkπkπk

πk























            

  



84

168DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Electrons in slowly varying potentials

Let us now add a « slowly » varying potential vslow(r) to the effective potential veff(r)

(for example the potential created by external electrodes). The one-particle 

wavefunctions n(r) and energies n now satisfy : 

NB : « slowly » varying means that vslow(r) does not change much on the scale of 

the unit cell :
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The effective mass equation (I)

We look for the lowest-lying electron states. 

We expand (r) in Bloch waves :

and assume |ank| << |a5k|, n  5. Since vslow(r) is slowly varying, we also expect |a5k|

to decrease rapidly with |k|.

We then easily get, dropping all n  5 terms :
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The effective mass equation (II)

We next multiply by                    and integrate over space :

We have :

     0555   rr k

rk

k

kk uev i
slowa

                 'uuvreduured slow
ii

krrrrr
k

kk

rkk

kk

rkk

kk  
   05'5

'3
5'5

'3
55 a

 rk

rk 
'5

' ue i

        ity]orthogonal  waves[Bloch  kkrr kk

rkk 
 '5'5

'3 uured i

171DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

The effective mass equation (III)

For small enough |k| and |k’|,

Proof :

.
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The effective mass equation (IV)

We next multiply by                    and integrate over space :

We have :

Hence we get :
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The effective mass equation (V)

We then use k·p theory for 5k’ and u5k’u5k :

Dropping all terms that couple k and vslow(r) [i.e. O(kk’)], we end up with :

We last go back to real space - We multiply by eik’·r and sum over k’ :
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The effective mass equation (VI)

We easily get :

Let us finally introduce :

(r) thus satisfies the following equation :
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The effective mass equation (VII)

(r) is called the « envelope » function. The true conduction band wavefunction 

indeed reads : 
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The effective mass equation (VIII)

NB : If vslow(r)  0, we recover Bloch waves as the solutions of the effective mass 

equation :
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Interpretation of the envelope function

|(r)|2  |(r)|2 |u50(r)|2 is the probability to find the electron at r.

The probability p(r) to find the electron in an unit cell around r is therefore :

|(r)|2  p(r)/0 is thus the unit cell-averaged probability to find the 

electron at r.
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Ehrenfest‟s theorem

Time-dependent version of the effective mass equation :

Ehrenfest‟s theorem for the average position r and « impulsion » 

(Semi-)classical limit : if (r;t) is localized enough with respect to vslow(r), the 

electron appears as a classical particle with position re  r(t) and 

impulsion pe  p(t) :
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We are looking for the lowest conduction band state.

The latter satisfies :

We now take 50  0 as the reference of energies for simplicity.

Since the potential has spherical symmetry, we may split (r) as follows :

The lowest electron state will likely be s-like (Ylm  Y00  constant) :

Application : The spherical nanocrystal (I)
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The effective mass equation then simplifies into :

We look for Rn0(r) in the form Rn0(r)  fn0(r)/r :

The solutions of this equation read :

We last enforce the boundary conditions :

Application : The spherical nanocrystal (II)
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We thus finally get :

In particular,

The 1/R2 dependence of the confinement energy is typical of the effective mass 

approximation with infinite barrier heights.

Application : The spherical nanocrystal (III)
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The valence band problem (I)

We now wish to do k·p theory for, e.g., the highest valence band energy 4k

around k  0…

Problem : There are three nearly degenerate highest valence bands 

around k  0. Standard second order perturbation theory will fail !
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The valence band problem (II)

According to this picture, there should be three degenerate highest valence bands 

at k  0, corresponding to bonding combinations of px, py, and pz orbitals.

This degeneracy is lifted by the so-called « spin-orbit coupling ».
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Spin-orbit coupling

Spin-orbit coupling is a relativistic effect…

Semi-classical image : Imagine you are riding an electron… The nuclei appear as 

moving charges in your frame ; they thus create a magnetic field that acts upon the 

spin of the electron.

The orbital motion of the electron thus couples to its spin ; hence the name « spin-

orbit coupling ». The hamiltonian now reads :

where vion(r) is the ionic potential and S is the electron spin.

As a consequence there are no more pure /  states, but only mixed states :

Spin-orbit coupling actually has no effect on s-like atomic orbitals, thus little effect 

on the lowest conduction band. 
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The valence band structure at k  0
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Kramers degeneracy

Without spin-orbit

Light hole

Heavy hole

E

Split-off



With spin-orbit

  50  500 meV

The bands remain twofold degenerate.

This is the so-called Kramers

degeneracy, that has to do with time-

reversal symmetry. 

The degeneracy between  and 

bands without spin-orbit coupling is just a 

special case of Kramers degeneracy

The bands are twofold

spin-degenerate (one 

and one band)

E
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We want to compute the effect of the k·p term on the highest valence bands away 

from k  0 (here leaving out the spin-orbit term for simplicity) : 

But we still have to face this near-degeneracy problem : straightforward second-

order perturbation theory is bound to fail…

Solution : 

Treat exactly the k·p couplings in the J,mj manifold.

Treat the k·p couplings with remote bands in perturbation.
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k·p theory for the valence band (II)

Example : Suppose we are interested

in the heavy and light hole bands right

around k  0, within an energy 

range << …

We build the matrix of the k–dependent

hamiltonian in the basis :

We then correct the elements of this 4x4 matrix for the coupling with remote bands 

using second order perturbation theory.

We last diagonalize the 4x4 matrix and actually get twofold degenerate bands…
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Luttinger‟s hamiltonian

The 4x4 matrix in the                                                    basis reads : 

1, 2 and 3 are the so-called « Luttinger parameters ». They can be expressed, 

like the conduction band effective mass, as a function of the nm  un0pum0’s. 

Practically, we use experimental values derived from measurements of the valence 

band structure around k  0.
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Light and heavy hole bands

The eigenvalues of H(k) are :

Let k  (0,0,k). We then get :

Let k  (k,k,k)/3. We then get :

Anisotropic heavy and light hole masses !
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Valence band warping

The energy surfaces around k  0 are are deformed or « warped » spheres. As a 

consequence the valence bands can not be characterized by a single effective 

mass.

It is not possible to make an accurate single band approximation for the holes 

except in special circumstances (some quantum wells and strained systems). A full 

4 bands (Luttinger hamiltonian), 6 bands (including the split-off bands in the basis) 

and sometimes even 8 bands (also treating the conduction band on the same 

footing) k·p model is needed.

Shape of the heavy hole band 

energy surfaces in Si

Shape of the light hole band 

energy surfaces in Si
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Holes in slowly varying potentials (I)

Let us again add a « slowly » varying potential vslow(r) to the effective potential 

veff(r)… Can we write for the holes an equation similar to the effective mass 

equation for the electrons ?

The answer is yes, though the derivation is a bit more involved…

In the case of the four bands Luttinger hamiltonian, the hole wavefunctions (r) in 

vslow(r) can be written :
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Holes in slowly varying potentials (II)

The four envelope functions 3/2(r), 1/2(r), 1/2(r) and 3/2(r) satisfy :

where H is Luttinger‟s 4x4 Hamiltonian with the substitution : 
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Holes in slowly varying potentials (III)
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Confinement in semiconductor heterostructures (I)

The conduction band profile acts as a potential for the electrons (there are actually 

some subtleties due to the variation of the effective mass across the interfaces).
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Confinement in semiconductor heterostructures (II)

A finite well only binds a limited number of states.

E

Infinite well

Continuum

Well with finite depth U0

In
A

s

G
a
A

s

G
a
A

s

Quantum well
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Confinement of the holes

Holes have negative dispersion in the solid :

We are looking for the highest hole wavefunctions (lowest ionization energies) :

E
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Increasing kinetic energy
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Application : InAs/GaAs quantum dots (I)

Eight bands k·p calculation in the basis :

The k·p coupling between the highest valence bands and the lowest conduction 

band is thus fully taken into account (i.e. beyond second order perturbation 

theory). The effects of strains have also been included in the calculation.

  SSZZYYXX ,,,,,,,

M. Grundmann et al., Phys. Rev. B 52, 11969 (1995)

O. Stier et al., Phys. Rev. B 59, 5688 (1999)
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Application : InAs/GaAs quantum dots (II)

Electron and hole states, labelled 

according to the number of nodal 

surfaces parallel to each of the three 

planes on the right.

b = 13.6 nm ; h = b/2 = 6.8 nm

Increasing energy

O. Stier et al., Phys. Rev. B 59, 5688 (1999)

b

h
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Application : InAs/GaAs quantum dots (III)

O. Stier et al., Phys. Rev. B 59, 5688 (1999)

Energy of the electron and hole 
states as a function of base 
length b.

The zero of energy is the bulk 
conduction band edge in GaAs on 
the electron side, and the bulk 
valence band edge in GaAs on the 
hole side.
CM and VFF are two different 
model for the strain distribution in 
the system.
« Wetting layer » is the energy of 
the electrons and holes in the thin 
InAs layer running below the 
pyramids.

As expected, the bandgap 
energy increases with 
decreasing base length due to 
quantum confinement.
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Application : InAs/GaAs quantum dots (IV)

Eight bands k·p calculation in the basis :

  SSZZYYXX ,,,,,,,

b

h

b = 13.6 nm ; h = b/2 = 6.8 nm

O. Stier et al., Phys. Rev. B 59, 5688 (1999)
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The limits of the k·p approximation

The k·p approximation is accurate in weakly confined nanostructures such as 

InAs/GaAs quantum dots and large nanocrystals.

However the k·p approximation suffers from known deficiencies :

It does not properly reproduce bulk bands at large k / high energy : 

As a consequence the k·p approximation fails to describe the electronic 

properties of nanostructures at high electron/hole energy (e.g. highly confined 

structures such as small nanocrystals).

The k·p approximation can not handle atomic-like boundary conditions.

We need an atomistic method reproducing the bulk band structures 

over a wide energy range to overcome these deficiencies

Si valence band structure

203DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Comparison : k·p versus tight-binding

k·p and tight-binding are semi-empirical methods : they are based on a 

parametrization of the bulk band structure (through effective masses or tight-

binding parameters) and implicitely assume that the effective potential created by 

each atom is the same in bulk and nanostructures (transferability). This, of 

course, is an approximation that always break down in small enough systems.

k·p Tight-binding

Description of bulk band 

structure

Accurate right around the 

conduction band minimum 

and valence band maximum

Accurate throughout the 

whole first Brillouin zone

Description of 

nanostructures

Accurate in weakly confined 

systems

Usually accurate even in 

highly confined systems 

(small nanocrystals).

Can handle atomic-like 

boundary conditions (e.g. 

surface reconstructions, …)

Computational cost Continuum model : does not 

depend on the size of the 

system

Increase at least linearly 

with the number of atoms
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Part III

Self-energy and excitonic corrections

in nanostructures

205DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

Outline

III.1 : 

The « self-energy » correction

III.2 : 

The exciton
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III.1 : The « self-energy » correction

207DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

The self-energy problem (I)

Let us add an electron to an otherwise neutral solid...

Coulomb holeIon cores

This electron repells nearby 

valence electrons, thus leaving 

partially « naked » ion cores 

around him.

The electron is thus « clothed » 

by a cloud of positive charges 

(also known as a Coulomb hole) 

that screens its interactions with 

the other particles. This Coulomb 

hole follows the electron 

travelling in the solid.
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The self-energy problem (II)

Let us add an electron to an otherwise neutral solid...

The charge q  e(11/in) cast out from the Coulomb hole is expelled to « infinity » 

and does not interact any more with the additional electron…

Coulomb holeIon cores

+ =

e 









in

e


1
1

in

e



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The self-energy problem (III)

In finite-size nanostructures 

however, the charge cast out 

from the Coulomb hole is 

expelled onto the surfaces of 

the system, and thus still 

interacts with the additional 

electron…

The interaction of the electron 

with the so-called image or 

polarization charges it has 

itself induced on the surfaces 

of the system is responsible for 

large « self-energy » 

corrections to the electronic 

structure.
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Classical electrostatics (I)

Gauss theorem for a single electron at the 

center of a nanocrystal with radius R and 

dielectric constant in embedded in a 

medium with dielectric constant out :
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Classical electrostatics (II)
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The potential created by the electron can be split in two parts V(r)  Vb(r)+ Vs(r), 

where :
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
Vb(r) is the potential created in vacuum by 

the electron plus its « local » Coulomb 

hole.

Vs(r) is the potential created in vacuum by 

the (uniform) image charge distribution at 

the surface of the nanocrystal.

R

in

out
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Classical electrostatics (III)

If out  1, 4R2s  e(11/in) is, as expected, the charge expelled from the 

Coulomb hole around the electron. In particular, the total charge of the system 

(electron + Coulomb hole + surface polarization charges) is –e, so that the 

potential outside the nanocrystal is just V (r)  e/r.
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Classical electrostatics (IV)

If out  1, 4R2s  e(1/out 1/in) can be seen as the charge q  e(11/in)

expelled from the Coulomb hole plus a charge q’  e(11/out) brought by the 

outer medium to screen the electron. In particular, s  0 if in  out.
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where :

Pn(x) is the Legendre ploynomial of order n (cf. spherical harmonics).

Classical electrostatics (V)

Generalization : The potential 

created at point r’ by an electron at 

point r in a nanocrystal with radius R

and dielectric constant in embedded 

in a medium with dielectric constant 

out is :
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Let us consider an additional electron at 

point r. This electron creates at point r’

a potential :

V(r,r’)  Vb(r,r’) + Vs(r,r’)

where Vb(r,r’)  e/inr  r’is the 

potential created by the electron plus its 

Coulomb hole and Vs(r,r’) is the 

potential created by the surface pola-

rization charges. The latter thus act 

back onto the electrons with a potential :

e(r)  eVs(r,r)

A more refined theory where the 

electron is introduced « adiabatically » 

into the system actually yields :

e(r)  eVs(r,r)/2

The self-energy correction : semi-classical theory (I)
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e 
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The self-energy correction : semi-classical theory (II)

Lowest electron state

E
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The self-energy correction : semi-classical theory (III)

Lowest electron state

Highest hole state
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The self-energy correction : semi-classical theory (IV)

Lowest electron state

Highest hole state

E

Lowest electron state

Highest hole state

E

Lowest electron state

Highest hole state

E

The hole feels a potential h(r)   e(r) !! 
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The self-energy potential e(r) (I)

The semi-classical self-energy potential e(r) is positive inside the nanocrystal…

R = 1.43 nm ; in  7.56 ; out  1
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The self-energy potential e(r) (II)

…negative outside (the electron polarizes the nanocrystal and attract positive 

charges on its side),…

R = 1.43 nm ; in  7.56 ; out  1

-

-

-

+

+

+
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The self-energy potential e(r) (III)

…and diverges as the electron approaches the image charges at the surface of the 

nanocrystal (this divergence actually disappears in a more refined many-body 

approach such as the GW approximation).

R = 1.43 nm ; in  7.56 ; out  1
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First-order perturbation theory (I)

Let :

… without self-energy potential. The first-order self-energy corrections read :
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First-order perturbation theory (II)

We can hopefully get a reasonnable approximation for ee and hh using 

an effecive mass ansatz for the wavefunctions e(r) and h(r) :

Then,
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First-order perturbation theory (III)

This finally yields, in the limit in + out >> 1,

and :
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First-order perturbation theory (IV)

The self-energy corrections open (resp. close) the quasiparticle gap when in > out

(resp. out > in). They decrease in 1/R, slower than quantum confinement. They 

are thus far from negligible in most experimental setups !!
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Application : InAs nanocrystals

in  13.6

Bandgap energy without 

self-energy correction 

(in  out )

ee and hh for 

out  1

ee and hh as 

a function of out for 

R  3.2 nm

DSM/DRFMC/SP2M/L_Sim 227Quy Nhon, 31/12/2007

III.2 : The exciton
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The exciton 

Let us imagine the following experience :

We remove one electron from the system, thus leaving a hole with energy N.

We add an electron with energy N+1 far away from the hole.

We then wait for electron-hole recombination [i.e. the system returns to its ground 

state] and collect the emitted photon (if any).

Is the energy of the photon hv  N+1  N ?

NO !

Before recombination the quasi-electron and hole will bind in a lower energy state 

called an exciton.

229DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

The exciton in bulk materials (I)

Center of mass

electron

hole

The electron at re and the hole at rh

attract each other with an effective 

Coulomb interaction :

provided |re rh| is not too small.

The attraction reduces the energy of 

the electron-hole pair by the 

« exciton binding energy » x :

hv  N+1  N  x

The exciton is (in a first 

approximation) an hydrogenoid-like 

bound state between the electron 

and the hole.

 
her

he

e
W

rr
rr






2

,



115

230DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

The exciton in bulk materials (II)

We assume that the independent electron and hole can be described by a single 

band effective mass model :

The solution of these equations are Bloch waves :

We now introduce the electron-hole pair energy   e  h and  « uncorrelated »

envelope function (re, rh)  e(re)h(rh), which satisfy :
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The exciton in bulk materials (III)

We last switch on the screened Coulomb interaction between the electron and the 

hole :

The electron-hole pair energy  and envelope function (re, rh) now satisfy :

(re, rh) can not be written any more as a product (re, rh)  e(re)h(rh) of one 

electron and one hole wavefunction. Still, the center of mass motion can be 

decoupled from the relative motion of the electron-hole pair. Let us indeed 

introduce :
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The exciton in bulk materials (IV)

We get :
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The exciton in bulk materials (V)

R and r are uncoupled : we can indeed split (R,r)  m (R)x(r),   g  m  x

and solve :

The solution of the center of mass equation is just :

where K is an arbitrary wavector. The ground-state energy for the center of mass 

motion is thus :
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The exciton in bulk materials (VI)

The equation for the relative motion of the electron and hole is similar to the 

hamiltonian of the Hydrogen atom, with m0 replaced by m* and e2 replaced by e2/r. 

The ground-state wavefunction and energy for the relative electron-hole motion are 

therefore : 

 




















)()()(
2

)()(
2

2

*

2

**

2

rr
r

r

RR

r

R

xxx

r

x

mmm

he

e

mm





m







 

 

















radius] exciton [the     where

 energy binding exciton the  

2

2
/

3

0

22

4
0

1

2

e
ae

a

e

r
x

a

x

x

r

x

x

m








m






r
r

235DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007

The exciton in bulk materials (VII)

Summary : The lowest electron-hole pair energy and wavefunction are :

Alternatively,

This wavefunction describes a bound electron-hole pair freely moving in the solid.

Application : The exciton in GaAs. 
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The exciton in bulk materials (VIII)

Center of mass

electron

hole

21,
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Confining the exciton

L >> ax

Center of mass confinement

L < ax

Laterally squeezed 

exciton

Single-particle

confinement

When all the dimensions of the system become significantly lower than the bulk 

exciton radius ax, the Coulomb interaction can not efficiently couple any more the 

motion of the electron and hole because their kinetic energy is too high. Thus,

(re, rh)   e(re) h(rh) [Uncorrelated electron-hole pair]
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The exciton in nanocrystals (I)

In a nanocrystal, the electron 

interacts with the hole and its 

cloud of screening charge, 

including the polarization 

charges at the surface of the 

nanocrystal. The effective 

electron-hole interaction is 

thus :

W(r,r’)  Wb(r,r’) + Ws(r,r’)

where Wb(r,r’)  e2/inr  r’

and Ws(r,r’) is the interaction 

with the surface polarization 

charges.
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The exciton in nanocrystals (II)

Since the diameter of the nanocrystals is usually much lower than the bulk exciton 

radius ax, we can deal with  the electron-hole attraction using first-order 

perturbation theory, which amounts to assume : 

(re, rh)   e(re) h(rh) [Uncorrelated electron-hole pair]

The exciton binding energy then reads :

Using again an effective mass ansatz for the wavefunctions e(r) and h(r) :

as well as:
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The exciton in nanocrystals (III)

Exciton binding energy

for out  1

 b
(e

V
)

Exciton binding energy

as a function of out for

R  3.2 nm

 b
(e

V
)

We finally end up with :

Application : InAs nanocrystals (in = 13.6).
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Let :

… without self-energy potential. The first-order self-energy corrections read :

while the first-order excitonic correction read :

Using effective mass wavefunctions one gets :

From the tight-binding to the optical gap (I)
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From the tight-binding to the optical gap (II)

The optical (excitonic) gap is thus :
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The End
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Solution V0 = 0.3 eV

k = 0.0276 Å-1,  = 41 meV 

Solution V0 = +

k = 0.0314 Å-1,  = 54 meV
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Graphene bands


