

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

2

General outline

Part I :

Introduction to semiconductor nanostructures

•Part II :

Electronic structure methods

Part III :

Self-energy and excitonic corrections in nanostructures

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

3

Part I

Introduction to semiconductor nanostructures

Outline

●I.1:

Electrons and holes

•I.2 :

Semiconductor materials and nanostructures

•I.3 :

Numerical simulation in nanosciences : Challenges and perspectives

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

5

I.1 : Electrons and holes

Non-interacting systems : Ground-state (I)

• Consider *N* electrons moving in a one-body potential $v(\mathbf{r})$. We look for their groundstate energy $E_0(N)$ and for their ground-state wavefunction $\Psi_0(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$:

$$\hat{H}_N = \sum_{i=1}^N \hat{h}_i \text{ with } \hat{h}_i = -\frac{\hbar^2}{2m_0} \Delta_{\mathbf{r}_i} + v(\mathbf{r}_i)$$

$$\hat{H}_N \Psi_0(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = E_0(N) \Psi_0(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$$

• Solution : compute the spectrum of the one-particle Hamiltonian h...

$$-\frac{\hbar^2}{2m_0}\Delta_{\mathbf{r}}\varphi_i(\mathbf{r}) + \nu(\mathbf{r})\varphi_i(\mathbf{r}) = \varepsilon_i\varphi_i(\mathbf{r}) \qquad [\varepsilon_i \text{ twofold spin degenerate}]$$

... then build a Slater determinant with the N first φ_i 's :

$$\Psi_{0}(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{N}) = \begin{vmatrix} \varphi_{1}(\mathbf{r}_{1}) & \varphi_{2}(\mathbf{r}_{1}) & \cdots & \varphi_{N}(\mathbf{r}_{1}) \\ \varphi_{1}(\mathbf{r}_{2}) & \varphi_{2}(\mathbf{r}_{2}) & \cdots & \varphi_{N}(\mathbf{r}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{1}(\mathbf{r}_{N}) & \varphi_{2}(\mathbf{r}_{N}) & \cdots & \varphi_{N}(\mathbf{r}_{N}) \end{vmatrix} \quad E_{0}(N) = \varepsilon_{1} + \varepsilon_{2} + \dots + \varepsilon_{N}$$

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

7

Non-interacting systems : Ground-state (II)

 $E_0(N) = \varepsilon_1 + \varepsilon_2 + \ldots + \varepsilon_{N-1} + \varepsilon_N$

Fill the N lowest levels

 $\Psi(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{N},\mathbf{r}_{N+1}) = \begin{bmatrix} \varphi_{1}(\mathbf{r}_{1}) & \varphi_{2}(\mathbf{r}_{1}) & \cdots & \varphi_{N}(\mathbf{r}_{1}) & \varphi_{N+3}(\mathbf{r}_{1}) \\ \varphi_{1}(\mathbf{r}_{2}) & \varphi_{2}(\mathbf{r}_{2}) & \cdots & \varphi_{N}(\mathbf{r}_{2}) & \varphi_{N+3}(\mathbf{r}_{2}) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \varphi_{1}(\mathbf{r}_{N}) & \varphi_{2}(\mathbf{r}_{N}) & \cdots & \varphi_{N}(\mathbf{r}_{N}) & \varphi_{N+3}(\mathbf{r}_{N}) \\ \varphi_{1}(\mathbf{r}_{N+1}) & \varphi_{2}(\mathbf{r}_{N+1}) & \cdots & \varphi_{N}(\mathbf{r}_{N+1}) & \varphi_{N+3}(\mathbf{r}_{N+1}) \end{bmatrix}$ $n(\mathbf{r}) = \sum_{i=1}^{N} |\varphi_{i}(\mathbf{r})|^{2} + |\varphi_{N+3}(\mathbf{r})|^{2} = n_{0}(\mathbf{r}) + |\varphi_{N+3}(\mathbf{r})|^{2}$

$$\begin{split} E &= \varepsilon_1 + \varepsilon_2 + \ldots + \varepsilon_{N-1} + \varepsilon_N + \varepsilon_{N+3} \\ &= E_0 \big(N \big) + \varepsilon_{N+3} \end{split}$$

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

9

Non-interacting systems : Ionization energies

Non-interacting systems : Excitation energies

DSM/DRFMC/SP2M/L_Sim

I.2 : Semiconductor materials and nanostructures

Quy Nhon, 31/12/2007

13

From the atom to the solid (II)

Bulk metals, insulators, and semiconductors

Semiconductor nanostructures

DSM/DRFMC/SP2M/L_Sim Quy Nhon, 31/12/2007 17

Usual semiconductors (I)

 Group IV elements : Si, Ge, C (Diamond). Covalent systems.

Usual semiconductors (II)

• III-V semiconductors : GaAs, InAs, InSb... Slightly ionic bonds (« Ga⁺As⁻ »).

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

19

Usual semiconductors (III)

1	IA 1 H	IIA		Periodic Table														0 ² He
2	³ Li	⁴ Be		of the Elements									⁵B	°c	7 N	⁸ 0	° F	10 Ne
3	¹¹ Na	¹² Mg	IIIB	IVB	VB	VIB	VIIB		– VII ·		IB	IIB	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
4	¹⁹ K	Ca	21 Sc	22 Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	31 Ga	Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	⁵⁴ Xe
6	Cs	56 Ba	⁵⁷ *La	⁷² Hf	73 Ta	⁷⁴	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	⁸³ Bi	⁸⁴ Po	At	⁸⁶ Rn
7	⁸⁷ Fr	® Ra	89 +Ac	¹⁰⁴ Rf	¹⁰⁵ Ha	¹⁰⁶ Sg	¹⁰⁷ Ns	108 Hs	109 Mt	¹¹⁰ 110	111 111	¹¹² 112	¹¹³ 113					
*	* Lanthanide Series		Če	Pr	Ňd	Pm	Sm	Ĕu	Ğd	τ̈́b	ъ	Но	Ĕr	Ťm	Yb	Lu		
+	+ Actinide Series		⁹⁰ Th	Pa	⁹² U	⁹³ Np	Pu	⁹⁵ Am	°°Cm	Bk	°°Cf	⁹⁹ Es	Fm	Md	No	Lr		

• II-VI semiconductors : CdTe, ZnSe...

Crystal structure

 Most usual semiconductors crystallize in the cubic Diamond/Zinc-Blende structure.

œ

Alloys can also be synthetized, e.g. In_{0.8}Ga_{0.2}As.
 One FCC sublattice is occupied by the In/Ga atoms (80% In+20% Ga ~ randomly distributed), the other by the As atoms.

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

21

Optical applications of semiconductors

 Light emission : LEDs, lasers, ...
 Light absoption/detection : Photovoltaics, ...

Bandgap vs lattice parameter

Semiconductors for microelectronics

Semiconductors vs metals :

- Semiconductors have no low-energy electronic excitations :
 - Highly resistive. 😕
 - Incomplete screening of the electric fields :

$$V(r) = \frac{q}{\varepsilon r}$$

Electric fields can be applied deep inside a semiconductor !.. ©

- Metals have a large density of « free » electrons :
 - Highly conductive. 😊
 - But :
 - Almost complete screening of the electric fields \Rightarrow Metals are just equipotentials. They can hardly be controlled by external electric fields ! \otimes

• « Doped semiconductors » combine the best of the two worlds !

Doping the semiconductors (I)

Example : n-type doping of silicon.

Replace a few silicon atoms with phosphorous (one more electron) :

Doping the semiconductors (II)

Example : p-type doping of silicon.

Replace a few silicon atoms with boron (one less electron) :

Application : the field effect transistor

Doped semiconductors :

- Are reasonnably conductive.
- Can be controlled by external electric fields.
- Example : The field-effect transistor Millions of them in this computer !!

Towards nanoelectronics

 Continuous reduction in the characteristic size of the transistors (Moore's law). The number of transistors on a chip doubles ~ every two years !

<u>Production</u> : 65 & 45 nm « nodes ». <u>Research</u> : 32 nm (2010), 22 nm, 16 nm (?)...

\Rightarrow Technological and physical limitations ? \Leftarrow

• « <u>Beyond CMOS</u> » : « Bottom-up » approaches based on the assembly of nanometer-scale building blocks.

\Rightarrow New devices \Leftarrow

DSM/DRFMC/SP2M/L_Sim

Some building blocks in nanosciences

Semiconductor nanostructures : Nanocrystals (I)

DSM/DRFMC/SP2M/L_Sim

Semiconductor nanostructures : Nanocrystals (II)

Discrete, atomic-like set of states (« Artificial atoms ») :

Quantum confinement :

The bandgap energy increases with decreasing diameter. The absorption & emission shift from red to blue.

Semiconductor nanostructures : Nanocrystals (III)

Quantum confinement

The bandgap energy increases with decreasing diameter. The absorption & emission shift from red to blue.

• The confinement increases the kinetic energy of the electrons and holes :

Semiconductor nanostructures : Nanocrystals (IV)

Applications (examples) :

Fluorescent labels for biology :

IBM research

The nanocrystals are capped with molecules that bind to specific targets, such as tumor cells for example.

M. Bruchez Jr. et al., Science 281, 2013 (1998) ; W. C. W. Chan and S. Nie, Science 281, 2016 (1998)

Few-electron memories (Si nanocrystals) :

Stransky-Krastanov growth :

Electrons are stored in the nanocrystals.

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

33

Semiconductor nanostructures : InAs/GaAs dots (I)

system

Semiconductor structures can be grown layer by layer using « molecular beam epitaxy ».

Semiconductor nanostructures : InAs/GaAs dots (I)

Semiconductor nanostructures : InAs/GaAs dots (II)

Semiconductor nanostructures : InAs/GaAs dots (III)

J.Y. Marzin *et al.*, Phys. Rev. Lett. **73**, 716 (1994)

Semiconductor nanostructures : Nanowires (I)

Semiconductor nanostructures : Nanowires (II)

I.3 : Numerical simulation in nanosciences : Challenges and perspectives

Numerical simulation in nanosciences : Challenges

• Atomistic simulation is needed at the nanometer scale.

Two challenges :

- Modelize the structural and electronic properties of the materials at the atomic scale, to :
 - Improve our understanding of the physics of present devices.
 - Anticipate the merits and limits of emerging technologies.

How do vacancies migrate in silicon ?

Fracture proapgation in silicon...

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

41

Numerical simulation in nanosciences : Challenges

• Atomistic simulation needed at the nanometer scale.

Two challenges :

- Modelize the structural and electronic properties of the materials at the atomic scale, to :
 - Refine our understanding of the physics of present devices.
 - Anticipate the merits and limits of emerging technologies.
- Modelize nano-objects to understand and optimize their :
 - Structural,
 - Optical,

- Transport properties.

[Light sources, photovoltaics, ...] [Nanoelectronics]

DSM/DRFMC/SP2M/L_Sim

Numerical simulation in nanosciences : Challenges

• Atomistic simulation needed at the nanometer scale.

Two challenges :

- Modelize the structural and electronic properties of the materials at the atomic scale, to :
 - Refine our understanding of the physics of present devices.
 - Anticipate the merits and limits of emerging technologies.
- Modelize nano-objects to understand and optimize their :
 - Structural,Optical,
- [Light sources, photovoltaics, ...]
- Transport properties.
- [Nanoelectronics]

Towards a numerical "nanoscope/nanospectrometer" able to compute properties that are hardly accessible experimentally.

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

43

Methods

DSM/DRFMC/SP2M/L_Sim

Ab initio methods

● No adjustable parameters (≠ no approximations).

- <u>Example</u> : Density Functional Theory (DFT).
 - The DFT allows the calculation of the ground-state energy and properties of solids and molecules (Hohenberg & Kohn 1964, Kohn & Sham 1965). It consists in replacing the system of interacting electrons with a fictious system of non-interacting electrons moving in an effective potential v_{hrc}.

• Numerically intensive (10 to ~1 000 atomes depending on the computer).

DSM/DRFMC/SP2M/L_Sim

Vacancy = Missing atom.

Quy Nhon, 31/12/2007

45

Application : Vacancy diffusion in silicon (I)

 Semiconductors used in microelectronics are doped : Some silicon atoms have been replaced with e.g., boron or phosphorous to

introduce extra electrons or holes.

 These dopants are usually "implanted" in very specific locations on the chip.

- Vacancy diffusion induces the migration of dopants ⇒ Dispersion of device characteristics.
- The diffusivity of vacancies (related to the "migration energy" E_m) is controversial :
 - Watkins 1964 : E_m = 0.45 eV.
 - Bracht 2003 : E_m = 1.80 eV...

Can atomistic simulation answer to this controversy ?

DSM/DRFMC/SP2M/L_Sim

Quy Nhon, 31/12/2007

46

Application : Vacancy diffusion in silicon (II)

Application : Vacancy diffusion in silicon (III)

• The *ab initio* calculations only provide a hint... What is indeed the exact dynamics of the vacancies ?

Kinetic Monte-Carlo :

- Two vacancies in a > 10 millions Si atoms box. The vacancies can "jump" between neighboring sites. The configuration of the system is characterized by the position of the vacancies.
- A simplified model for the transition energies, parametrized on *ab initio* calculations.

 An efficient sampling of the configurations space (« Monte-Carlo » algorithms), that allows a fast calculation of the most probable trajectories of the vacancies.

Application : Vacancy diffusion in silicon (IV)

D. Caliste et P. Pochet, Vacancy-Assisted Diffusion in Silicon: A Three-Temperature-Regime Model, Phys. Rev. Lett. **97**, 135901 (2006).

Semi-empirical methods

- Principle : Write the wavefunctions as linear combination of atomic orbitals.
 - The range of the model is limited to 1st, 2nd or 3rd nearest-neighbor atoms.
 - The matrix elements of the hamiltonian are considered as adjustable parameters usually fitted to the bulk band structures then transferred to the nanostructures.
 - The computation time scales linearly with the number of atoms (up to a few millions of atoms today).

Application : Optical properties of nanocrystals

Methods

DSM/DRFMC/SP2M/L_Sim